
NORMAL SUBGROUPS

DEFINITION: A subgroup N of a group G is normal if gNg−1 = N for all g ∈ G, where
gNg−1 = {gng−1 | n ∈ N}. We write N E G to indicate that N is a normal subgroup of G.

LEMMA: Let N be a subgroup of a group G. The following are equivalent:
(1) N is a normal subgroup of G.
(2) For all g ∈ G, gNg−1 ⊆ N .
(3) For all g ∈ G, the left coset gN is equal to the right coset Ng.
(4) For all g ∈ G, gN ⊆ Ng.
(5) For all g ∈ G, Ng ⊆ gN .

(1)(1) Examples of normal subgroups: Use the definition and/or the Lemma to show the following:
(a)(a) If G is an abelian group and H ≤ G, then H E G.

Let h ∈ H and g ∈ G. Since G is abelian, we have ghg−1 = gg−1h = h. Thus,
gHg−1 ⊆ H , so H is normal.

(b)(b) The center Z(G) of a group G is a normal subgroup1 of G.

Let z ∈ Z(G) and g ∈ G. Since z is in the center, we have gzg−1 = gg−1z = z. Thus,
gZ(G)g−1 ⊆ Z(G), so Z(G) is normal.

(c)(c) The2 group K = {e, (12)(34), (13)(24), (14)(23)} ≤ S4 is normal.

First, we should check that it is indeed a subgroup. To see it, we can just multiply out
elements and check that the result is in K. For each product involving e, there is nothing
to check, and each element besides e has order 2, so its product with itself is in K. We
then just verify

(12)(34)(13)(24) = (13)(24)(12)(34) = (14)(23), (12)(34)(14)(23) = (14)(23)(12)(34) = (13)(24), and (13)(24)(14)(23) = (14)(23)(13)(24) = (12)(34).

Note also that K is abelian. Now we check that K is normal in G. For any τ in G, using
the exercise from the homework, if (i j)(k `) is a product of two disjoint transpositions,
then

τ(i j)(k `)τ−1 = τ(i j)τ−1τ(k `)τ−1 = (τ(i) τ(j))(τ(k) τ(`))

is as well, and is thus an element of K. This shows that K is normal.

(d)(d) Let H = {e, (12)(34)} ≤ K, with K as above. Check that H E K and K E S4, but
H 6E S4. Draw a moral from this example.

Since K is abelian, H E K. However, H is not a normal subgroup of S4, since con-
jugating (12)(34) by (1 3) yields (1 4)(2 3) /∈ H . Normal subgroup is not a transitive
relation.

(e) Is the subgroup of all rotations a normal subgroup of Dn?

1Recall that we have already shown that Z(G) ≤ G.
2Hint: Recall from HW 1 that τ(i j)τ−1 = (τ(i) τ(j)).



Yes.

(f) Is the subgroup generated by one reflection a normal subgroup of Dn?

No.

(2) Prove the Lemma.

(3) Let G be a group and H ≤ G a subgroup of index 2. Show that H must be normal.

RECALL:
• An equivalence relation ∼ on a group is compatible with multiplication if x ∼ y implies
xz ∼ yz and zx ∼ zy for all x, y, z ∈ G. If ∼ is compatible with multiplication, then the
equivalence classes of ∼ obtain a well-defined group structure via the rule [x][y] = [xy].
• For a subgroup H , we define an equivalence relation on G by x ∼H y if and only hx = y for

some h ∈ H . The equivalence classes are the right cosets Hx.

THEOREM: Let G be a group. An equivalence relation ∼ is compatible with multiplication if and
only if ∼ = ∼N for some N E G.

COROLLARY: IfG is a group andN is a normal subgroup, the collection of left cosets {gN | g ∈ G}
of N forms a group by the rule gN · hN = ghN .

(4)(4) Explain why the Corollary follows from the Theorem.

By the Theorem, if N is normal, the equivalence relation ∼N is compatible with multiplica-
tion, and thus by the recollection above, we get an induced group structure on the equivalence
classes. The equivalence classes of ∼N are the right cosets of N in G; since N is normal, we
can equivalently consider these as the left cosets of N in G. The rule for the group action is
the same as in the recollection just using the concrete notation gN for the equivalence class
[g].

(5)(5) Prove the (⇐) direction of the Theorem.

Suppose that N is normal, and take ∼N . Let x, y, z ∈ G. If x ∼N y, then Nx = Ny, so
Nxz = Nyz, and hence xz ∼N yz. But we also have xN = yN , so zxN = zyN , so
Nzx = Nzy and zx ∼N zy.

(6) Prove3 the (⇒) direction of the Theorem.

3Hint: The main issue here is to find a candidate N . Think first about how you would reconstruct N from ∼N .


