Universal mapping theorem for cyclic groups: Let $G = \langle x \rangle$ be a cyclic group and H be an arbitrary group.

- (1) If $|x| = n < \infty$ and $y \in H$ is such that $y^n = e$, then there is a unique homomorphism $f: G \to H$ such that f(x) = y.
- (2) If $|x| = \infty$ and $y \in H$ is arbitrary, then there is a unique homomorphism $f: G \to H$ such that f(x) = y.

DEFINITION:

- The **infinite cyclic group** is the group $C_{\infty} = \{a^j \mid j \in \mathbb{Z}\}$ with operation $a^j a^k = a^{j+k}$. Its presentation is $\langle a \mid \varnothing \rangle$.
- For any $n \in \mathbb{Z}_{\geq 1}$, the cyclic group of order n is the group $C_n = \{a^j \mid j \in \{0, 1, \dots, n-1\}\}$ with operation $a^j a^k = a^{j+k \pmod{n}}$. Its presentation is $\langle a \mid a^n = e \rangle$.

CLASSIFICATION OF CYCLIC GROUPS: Every infinite cyclic group is isomorphic to C_{∞} . Every cyclic group of order n is isomorphic to C_n .

(1) Use the Universal Mapping Theorem for cyclic groups to prove the classification of cyclic groups.

Let $G=\langle x\rangle$ be an infinite cyclic group. By the UMP for cyclic groups, there is a homomorphism $f:G\to C_\infty$ mapping $x\mapsto a$. Conversely, by the UMP for cyclic groups, there is a homomorphism $g:C_\infty\to G$ mapping $a\mapsto x$. The composition $fg:C_\infty\to C_\infty$ maps $a\mapsto a$; the identity map is another such homomorphism, so by the uniqueness part of the UMP, fg is the identity on C_∞ . For the same reason, $gf:G\to G$ is the identity. It follows that f is an isomorphism.

Let $G=\langle x\rangle$ be a cyclic group of order n. Since $a\in C_n$ has order n, there is a homomorphism $f:G\to C_n$ mapping $x\mapsto a$. Likewise, there is a homomorphism $g:C_n\to G$ by the UMP. Following the same argument as above, we see that these are mutually inverse, so f is an isomorphism.

(2) Prove the Universal mapping theorem for cyclic groups.

We know that homomorphisms are uniquely determined by their images on a generating set, so in each case we just need to show existence.

In either case, define $f(x^i)=y^i$. We must show this function is a well-defined group homomorphism. To see that f is well-defined, suppose $x^i=x^j$ for some $i,j\in\mathbb{Z}$. Then, since $x^{i-j}=e_G$, using earlier work, we have

$$\begin{cases} n \mid i-j & \text{if } |x|=n \\ i-j=0 & \text{if } |x|=\infty \end{cases} \implies \begin{cases} y^{i-j}=y^{nk} & \text{if } |x|=n \\ y^{i-j}=y^0 & \text{if } |x|=\infty \end{cases} \implies y^{i-j}=e_H \implies y^i=y^j.$$

Thus, if $x^i = x^j$ then $f(x^i) = y^i = y^j = f(x^j)$. In particular, if $x^k = e$, then $f(x^k) = e$, and f is well-defined.

The fact that f is a homomorphism is immediate:

$$f(x^{i}x^{j}) = f(x^{i+j}) = y^{i+j} = y^{i}y^{j} = f(x^{i})f(x^{j}).$$

(3) Classify all subgroups of C_{∞} and describe the subgroup lattice.

¹We write the empty set in the relations spot to indicate that there are no defining relations.