SUBGROUPS

DEFINITION: Let GG be a group. A nonempty subset H of (G is a subgroup of GG if H is a group under
the the same operation as G (i.e., h -y b’ = h -¢ b/ for h, h' € H). We write H < G to indicate that H is
a subgroup of G.

Any group G has two trivial subgroups {e} and G.

LEMMA 1: Let H be a subset of GG.

e TWO STEP TEST: If H is nonempty, H is closed under multiplication! and H is closed under
inverses', then H is a subgroup of G.
e ONE STEP TEST: If H is nonempty, and for all z,y € H, xy~! € H, then H is a subgroup of G.

LEMMA 2 (GENERAL RECIPES FOR SUBGROUPS): Let GG be a group.
(1) If H<Gand K < H,then K < (.
(2) If {H,}aey is a collection of subgroups of G, then () o, H, < G.
(3) If f : G — H is a group homomorphism, then im(G) < H.
(4) If f : G — H is a group homomorphism, and K < G, then f(K) ={f(k) |k € K} < H.
(5) If f : G — H is a group homomorphism, and K < G, then ker(f) < G.
(6) The center Z(G) is a subgroup of G.

(1) Proving subsets are subgroups:
(a) Choose a couple of parts of Lemma 2 and prove them; you can use Lemma 1.

(1) By definition, K is a group under the multiplication in //, and the multiplication in
is the same as that in GG, so K is a subgroup of G.

(i1) First, note that / is nonempty since e € H, forall « € J. Moreover, given z,y € H,
for each o we have x,y € H, and hence zy~* € H,. It follows that zyy~* € H. By
the Two-Step test, H is a subgroup of G.

(iii) Since G is nonempty, then image( f) must also be nonemtpy; for example, it contains
fleg) = ey. If x,y € image(f), then x = f(a) and y = f(b) for some a,b € G, and
hence

vy~ = f(a)f(b)~" = f(ab™") € image(f).
By the Two-Step Test, image( f) is a subgroup of H.

(iv) The restriction g: K — H of f to K is still a group homomorphism, and thus f(K) =
imageg is a subgroup of H.

(v) Using the One-step test, note that if =,y € ker(f), meaning f(z) = f(y) = eg, then

flay™) = f@)f(y) ™" = ec
This shows that if z,y € ker(f) then zy~' € ker(f), so ker(f) is closed for taking
inverses. By the Two-Step test, ker(f) is a subgroup of G.
(vi) The center Z(@) is the kernel of the permutation representation G — Perm(G) for the
conjugation action, so Z((G) is a subgroup of G since the kernel of a homomorphism
is a subgroup.

(b) Let n > 3 and consider the dihedral group D,, of symmetries of the n-gon.
(1) Is the set of all reflections in D),, a subgroup?

TA subset H C G is closed under multiplication if x,yy € H = xy € H and closed under inverses if v € H = = € H.




No; the composition of two reflections is not a reflection. Also, the identity is not a
reflection.

(i1) Is the set of all rotations in D,, a subgroup?

Yes; the composition of two rotations is a rotation, as is the inverse of any rotation.

(c) Letn € Z>,, and define SL,,(R) to be the set of n x n real matrices with determinant 1. Show?
that SL,,(R) < GL,(R). (SL,,(R) is called the special linear group.)

Recall that det : GL,,(R) — R* is a homomorphism, and the identity of R* is 1. Thus, this
follows from part (5) of Lemma 2.

(d) Let n € Z>;. Recall from linear algebra that an n X n matrix Q) is orthogonal if QTQ = I,
where 7 denotes transpose and I denotes the identity matrix. Define O,,(R) to be the set of n x n
real orthogonal matrices. Show that O,,(R) < GL,(R). (O,(R) is called the orthogonal group.)

We use the two-step test. Let A, B € O,,,s0 ATA = I and BT B = I. Since A is square, note
that AA”T = I as well. Then (AB)T(AB) = BTATAB = B"B =1, s0 AB € O,. Also,
(A DT = (AT) "L, s0 (AHTA = (AT 1AL = (AATY P =Tt =1,50 A7t € O,.
Thus, O,, is a group.

(e) Define SO,,(R) to be the set of n x n real orthogonal matrices that have determinant 1. Show
that SO, (R) < GL,(R). (SO,(R) is called the special orthogonal group.)

By definition, SO,, = SL,, N O,, so by part 2 of Lemma 2, this is a subgroup.

(2) Prove or disprove: The union of two subgroups of a group is a subgroup.

(3) Prove Lemma 1.

“Hint: This becomes very quick with a proper use of Lemma 2.



DEFINITION: Let GG be a group, and S C G be a subset. The subgroup of G generated by S is the
intersection of all subgroups of GG that contain S:

(S) := ﬂ H
H<G
SCH
PROPOSITION: Let GG be a group, and S C G be a subset. Then

(4) Explain why (\u<c H is a subgroup of GG, and why it is the unique smallest subgroup of G that
SCH

contains S.

It follows from the Lemma that this is a subgroup. Call this group K. If H is a subgroup of G
containing S, then K is the intersection of H with some other set, by definition of K, so K C H.
This means that K is the unique smallest subgroup containing .S.

(5) PROOF OF THE PROPOSITION: Let K = {7 ---2Jm | x; € S, j; € Z} as in the Proposition.
(a) What concrete things do you need to show about K, S, and subgroups H < G to prove this
equality?
(b) Complete the proof.

CAYLEY’S THEOREM: Let GG be a finite group of order n. Then G is isomorphic to a subgroup of S,,.

(6) Prove® Cayley’s Theorem.

Let GG act on G by left multiplication. This action induces a permutation representation p :
G — Perm(G). We claim that p is injective. Indeed, if p(g) is the identity permutation, then
gh =g-h = hforall h € H, whence g = e. If G has n elements, we can label them 1 through
n, and identify Perm(G) with S,,; so we have an injective homomorphism p from G to S,,. Let
H be the image of p; we have an injective homomorphismp’ from G to H, and by definition of
image, this is also surjective. Thus p’ is an isomorphism so G = H. This is the isomorphism we
seek.

3Hint: Let G act on G by left multiplication.



