
SUBGROUPS

DEFINITION: Let G be a group. A nonempty subset H of G is a subgroup of G if H is a group under
the the same operation as G (i.e., h ·H h′ = h ·G h′ for h, h′ ∈ H). We write H ≤ G to indicate that H is
a subgroup of G.

Any group G has two trivial subgroups {e} and G.

LEMMA 1: Let H be a subset of G.
• TWO STEP TEST: If H is nonempty, H is closed under multiplication1 and H is closed under

inverses1, then H is a subgroup of G.
• ONE STEP TEST: If H is nonempty, and for all x, y ∈ H , xy−1 ∈ H , then H is a subgroup of G.

LEMMA 2 (GENERAL RECIPES FOR SUBGROUPS): Let G be a group.
(1) If H ≤ G and K ≤ H , then K ≤ G.
(2) If {Hα}α∈J is a collection of subgroups of G, then

⋂
α∈J Hα ≤ G.

(3) If f : G→ H is a group homomorphism, then im(G) ≤ H .
(4) If f : G→ H is a group homomorphism, and K ≤ G, then f(K) = {f(k) | k ∈ K} ≤ H .
(5) If f : G→ H is a group homomorphism, and K ≤ G, then ker(f) ≤ G.
(6) The center Z(G) is a subgroup of G.

(1)(1) Proving subsets are subgroups:
(a)(a) Choose a couple of parts of Lemma 2 and prove them; you can use Lemma 1.

(i) By definition, K is a group under the multiplication in H , and the multiplication in H
is the same as that in G, so K is a subgroup of G.

(ii) First, note thatH is nonempty since eG ∈ Hα for all α ∈ J . Moreover, given x, y ∈ H ,
for each α we have x, y ∈ Hα and hence xy−1 ∈ Hα. It follows that xy−1 ∈ H . By
the Two-Step test, H is a subgroup of G.

(iii) Since G is nonempty, then image(f) must also be nonemtpy; for example, it contains
f(eG) = eH . If x, y ∈ image(f), then x = f(a) and y = f(b) for some a, b ∈ G, and
hence

xy−1 = f(a)f(b)−1 = f(ab−1) ∈ image(f).

By the Two-Step Test, image(f) is a subgroup of H .
(iv) The restriction g : K → H of f to K is still a group homomorphism, and thus f(K) =

imageg is a subgroup of H .
(v) Using the One-step test, note that if x, y ∈ ker(f), meaning f(x) = f(y) = eG, then

f(xy−1) = f(x)f(y)−1 = eG.

This shows that if x, y ∈ ker(f) then xy−1 ∈ ker(f), so ker(f) is closed for taking
inverses. By the Two-Step test, ker(f) is a subgroup of G.

(vi) The center Z(G) is the kernel of the permutation representation G→ Perm(G) for the
conjugation action, so Z(G) is a subgroup of G since the kernel of a homomorphism
is a subgroup.

(b)(b) Let n ≥ 3 and consider the dihedral group Dn of symmetries of the n-gon.
(i) Is the set of all reflections in Dn a subgroup?

1A subset H ⊆ G is closed under multiplication if x, y ∈ H ⇒ xy ∈ H and closed under inverses if x ∈ H ⇒ x−1 ∈ H .



No; the composition of two reflections is not a reflection. Also, the identity is not a
reflection.

(ii) Is the set of all rotations in Dn a subgroup?

Yes; the composition of two rotations is a rotation, as is the inverse of any rotation.

(c)(c) Let n ∈ Z≥1, and define SLn(R) to be the set of n× n real matrices with determinant 1. Show2

that SLn(R) ≤ GLn(R). (SLn(R) is called the special linear group.)

Recall that det : GLn(R)→ R× is a homomorphism, and the identity of R× is 1. Thus, this
follows from part (5) of Lemma 2.

(d)(d) Let n ∈ Z≥1. Recall from linear algebra that an n × n matrix Q is orthogonal if QTQ = I ,
where T denotes transpose and I denotes the identity matrix. Define On(R) to be the set of n×n
real orthogonal matrices. Show that On(R) ≤ GLn(R). (On(R) is called the orthogonal group.)

We use the two-step test. LetA,B ∈ On, soATA = I andBTB = I . SinceA is square, note
that AAT = I as well. Then (AB)T (AB) = BTATAB = BTB = I , so AB ∈ On. Also,
(A−1)T = (AT )−1, so (A−1)TA−1 = (AT )−1A−1 = (AAT )−1 = I−1 = I , so A−1 ∈ On.
Thus, On is a group.

(e)(e) Define SOn(R) to be the set of n × n real orthogonal matrices that have determinant 1. Show
that SOn(R) ≤ GLn(R). (SOn(R) is called the special orthogonal group.)

By definition, SOn = SLn ∩On, so by part 2 of Lemma 2, this is a subgroup.

(2) Prove or disprove: The union of two subgroups of a group is a subgroup.

(3) Prove Lemma 1.

2Hint: This becomes very quick with a proper use of Lemma 2.



DEFINITION: Let G be a group, and S ⊆ G be a subset. The subgroup of G generated by S is the
intersection of all subgroups of G that contain S:

〈S〉 :=
⋂
H≤G
S⊆H

H

PROPOSITION: Let G be a group, and S ⊆ G be a subset. Then

〈S〉 = {xj11 · · ·xjmm | xi ∈ S, ji ∈ Z}.

(4)(4) Explain why
⋂
H≤G
S⊆H

H is a subgroup of G, and why it is the unique smallest subgroup of G that

contains S.

It follows from the Lemma that this is a subgroup. Call this group K. If H is a subgroup of G
containing S, then K is the intersection of H with some other set, by definition of K, so K ⊆ H .
This means that K is the unique smallest subgroup containing S.

(5) PROOF OF THE PROPOSITION: Let K = {xj11 · · ·xjmm | xi ∈ S, ji ∈ Z} as in the Proposition.
(a) What concrete things do you need to show about K, S, and subgroups H ≤ G to prove this

equality?
(b) Complete the proof.

CAYLEY’S THEOREM: Let G be a finite group of order n. Then G is isomorphic to a subgroup of Sn.

(6)(6) Prove3 Cayley’s Theorem.

Let G act on G by left multiplication. This action induces a permutation representation ρ :
G → Perm(G). We claim that ρ is injective. Indeed, if ρ(g) is the identity permutation, then
gh = g · h = h for all h ∈ H , whence g = e. If G has n elements, we can label them 1 through
n, and identify Perm(G) with Sn; so we have an injective homomorphism ρ from G to Sn. Let
H be the image of ρ; we have an injective homomorphismρ′ from G to H , and by definition of
image, this is also surjective. Thus ρ′ is an isomorphism so G ∼= H . This is the isomorphism we
seek.

3Hint: Let G act on G by left multiplication.


