DEFINITION: Given a set X, the **permutation group** on X is the set $\operatorname{Perm}(X)$ of bijective functions on X. This is a group with composition of functions as the operation. The **symmetric group** S_n is the permutation group on the set $[n] := \{1, \dots, n\}$.

A **cycle** is a particular type of permutation. By way of example, in S_7 :

- $\alpha=(2\ 4\ 5)$ is a 3-cycle. It is the permutation given by $\alpha(2)=4,\ \alpha(4)=5,\ \alpha(5)=2,$ and $\alpha(i)=i$ for $i\neq 2,4,5.$
- $\beta = (1\ 6\ 5\ 4)$ is a 4-cycle. It is the permutation given by $\alpha(1) = 6$, $\alpha(6) = 5$, $\alpha(5) = 4$, $\alpha(4) = 1$, and $\alpha(i) = i$ for $i \neq 1, 6, 5, 4$.

We will not consider 1-cycles. A 2-cycle is also called a **transposition**.

- (1) Warming up with cycles: Consider the symmetric group S_5 .
 - (a) Write out the cycle (143) explicitly as a function by listing the input and output values.

$$1 \mapsto 4, 2 \mapsto 2, 3 \mapsto 1, 4 \mapsto 3, 5 \mapsto 5.$$

(b) Write out the product of cycles $(1\,3\,5)(2\,5)$ explicitly as a function by listing the input and output values.

$$1 \mapsto 3, 2 \mapsto 1, 3 \mapsto 5, 4 \mapsto 4, 5 \mapsto 2.$$

- **(c)** Which of the following expressions yield the same permutation:
 - (1534)
 - (1435)
 - (3415)

The first and the last.

(d) What is the inverse of (1534)? How would you find the inverse of a cycle in general?

(1435). The inverse of a cycle is the reverse cycle.

(e) What is the $order^1$ of (1534)? How would you find the order of a cycle in general?

The order of (1534) is four. The order of an *n*-cycle is *n*.

(2) Show² the following LEMMA: For any distinct $i_1, \ldots, i_p \in [n]$,

$$(i_1 i_2 \cdots i_p) = (i_1 i_2)(i_2 i_3) \cdots (i_{p-1} i_p).$$

We say that two cycles $\sigma=(i_1\,i_2\,\cdots\,i_n)$ and $\tau=(j_1\,j_2\,\cdots\,j_m)$ are **disjoint** if $i_a\neq j_b$ for all a,b.

THEOREM 1: Let $n \ge 1$ be an integer, and consider the symmetric group S_n .

(1) Every permutation $\sigma \in S_n$ is equal to a product of disjoint cycles.

¹Recall that the **order** of an element g in a group G is the least integer n > 0 such that $g^n = e$ if some such n exists, else ∞ .

²Hint: To show that two functions are the same, show they have the same values. Compute what each side does to i_j , and what it does to an element of [n] that is not an i_j .

- (2) Disjoint cycles commute: if σ , τ are disjoint cycles, then $\sigma \tau = \tau \sigma$.
- (3) The expression of a permutation σ as a product of disjoint cycles is unique up to permuting factors.

The **cycle type** of a permutation is the list of the lengths of the cycles in its expression as a product of disjoint cycles.

- (3) Theorem 1(1) in action: To write $\sigma \in S_n$ as a product of disjoint cycles,
 - Start with $1 \in [n]$,
 - Look at $\sigma(1), \dot{\sigma^2(1)}, \ldots$ until we get back to $1 = \sigma^m(1)$. Make a cycle out of these:

$$(1 \ \sigma(1) \ \sigma^2(1) \ \cdots \ \sigma^{m-1}(1)).$$

- Look at the smallest element of $i \in [n]$ that hasn't appeared, and repeat with i in place of 1.
- Throw away the 1-cycles at the end.
- (a) Write the following permutation in S_7 as a product of disjoint cycles:

(b) Write the following product of nondisjoint cycles in S_7 as a product of disjoint cycles:

$$(1\ 3\ 5\ 7)(2\ 3\ 4\ 5).$$

(c) What is the cycle type of $(1\ 2)(3\ 4)$? What is the cycle type of $(1\ 2)(2\ 3)$?

2, 2 for the first; 3 for the second.

- (4) Proof of Theorem 1:
 - (a) What is the key idea to prove part (1) of Theorem 1?
 - (b) Prove part (2) of Theorem 1.
 - (c) Prove part (1) of Theorem 1.
 - (d) Prove³ part (3) of Theorem 1.

THEOREM 2: Let $n \ge 1$ be an integer, and consider the symmetric group S_n .

- (1) Every permutation $\sigma \in S_n$ is equal to a product of transpositions; thus, S_n is **generated**⁴by transpositions.
- (2) For a fixed $\sigma \in S_n$, either
 - every expression of σ as a product of transpositions involves an *even* number of transpositions, or
 - every expression of σ as a product of transpositions involves an *odd* number of transpositions.

In the first case, we say that σ is an **even** permutation and define $sign(\sigma) = 1$; in the second case, we say that σ is an **odd** permutation and define $sign(\sigma) = -1$.

³Hint: Let $\sigma = \tau_1 \cdots \tau_m$ with τ_i disjoint cycles, and $j \in [n]$. Then j appears in at most one τ_i . Show that, for such i, $\sigma^k(j) = \tau_i^k(j)$ and use this to solve for τ_i .

- **(5)** Signs of permutations:
 - (a) What is the sign of a transposition? Of a 3-cycle? Of a p-cycle? (Hint: Use the Lemma.)

A transposition has sign -1 by definition. A 3-cycle can be written as a product of two transpositions, so its sign is 1. By the Lemma, a p-cycle can be written as a product of p-1 transpositions, so its sign is $(-1)^{p-1}$.

(b) If the cycle type of σ is m_1, m_2, \ldots, m_t , then what is the sign of σ ?

Using the previous part, the sign is $(-1)^{(m_1-1)+(m_2-1)+\cdots+(m_t-1)}$.

- (6) Proving Theorem 2:
 - (a) Prove the Lemma.
 - (b) Explain how part (1) of Theorem 2 follows from the Lemma and Theorem 1.
 - (c) Explain why part (2) of Theorem 2 reduces to the following claim: if τ_1, \ldots, τ_m are transpositions and $\tau_1 \cdots \tau_m = e$, then m is even.
 - (d) By way of contradiction, suppose that there exists
- (†) $(a_1 b_1)(a_2 b_2) \cdots (a_m b_m) = e$ with m odd.

(Here $a_i \neq b_i$ but $a_i = a_j$ or $a_i = b_j$ is allowed.) Explain why, if an example of (†) exists, then there is a (†) with

- the smallest value of m, among all (†)'s
- among all (†)'s where m is minimal, the number t of times that a_1 appears is minimal.
- (e) Show that t = 1 is impossible, and that⁵ if $t \ge 2$, one can find another expression with the same value of m and t and also $a_1 = a_2$. Complete the proof.

⁴Recall that a group G is **generated** by a set S if every element of G can be written as a product of elements of S and their inverses.

⁵Hint: Use the identities (cd)(ab) = (ab)(cd) and (bc)(ab) = (ac)(bc).