
PERMUTATION GROUPS

DEFINITION: Given a set X , the permuatation group on X is the set Perm(X) of bijective functions
on X . This is a group with composition of functions as the operation. The symmetric group Sn is the
permuation group on the set [n] := {1, . . . , n}.

A cycle is a particular type of permutation. By way of example, in S7:
• α = (2 4 5) is a 3-cycle. It is the permutation given by α(2) = 4, α(4) = 5, α(5) = 2, and
α(i) = i for i 6= 2, 4, 5.
• β = (1 6 5 4) is a 4-cycle. It is the permutation given by α(1) = 6, α(6) = 5, α(5) = 4, α(4) = 1,

and α(i) = i for i 6= 1, 6, 5, 4.
We will not consider 1-cycles. A 2-cycle is also called a transposition.

(1)(1) Warming up with cycles: Consider the symmetric group S5.
(a)(a) Write out the cycle (1 4 3) explicitly as a function by listing the input and output values.
(b)(b) Write out the product of cycles (1 3 5)(2 5) explicitly as a function by listing the input and output

values.
(c)(c) Which of the following expressions yield the same permutation:

• (1 5 3 4)
• (1 4 3 5)
• (3 4 1 5)

(d)(d) What is the inverse of (1 5 3 4)? How would you find the inverse of a cycle in general?
(e)(e) What is the order1 of (1 5 3 4)? How would you find the order of a cycle in general?

(2) Show2 the following LEMMA: For any distinct i1, . . . , ip ∈ [n],

(i1 i2 · · · ip) = (i1 i2)(i2 i3) · · · (ip−1 ip).

We say that two cycles σ = (i1 i2 · · · in) and τ = (j1 j2 · · · jm) are disjoint if ia 6= jb for all a, b.

THEOREM 1: Let n ≥ 1 be an integer, and consider the symmetric group Sn.
(1) Every permutation σ ∈ Sn is equal to a product of disjoint cycles.
(2) Disjoint cycles commute: if σ, τ are disjoint cycles, then στ = τσ.
(3) The expression of a permutation σ as a product of disjoint cycles is unique up to permuting factors.

The cycle type of a permutation is the list of the lengths of the cycles in its expression as a product of
disjoint cycles.

(3)(3) Theorem 1(1) in action: To write σ ∈ Sn as a product of disjoint cycles,
• Start with 1 ∈ [n],
• Look at σ(1), σ2(1), . . . until we get back to 1 = σm(1). Make a cycle out of these:

(1 σ(1) σ2(1) · · · σm−1(1)).

• Look at the smallest element of i ∈ [n] that hasn’t appeared, and repeat with i in place of 1.
• Throw away the 1-cycles at the end.

1Recall that the order of an element g in a group G is the least integer n > 0 such that gn = e if some such n exists, else∞.
2Hint: To show that two functions are the same, show they have the same values. Compute what each side does to ij , and what

it does to an element of [n] that is not an ij .



(a)(a) Write the following permutation in S7 as a product of disjoint cycles:

i 1 2 3 4 5 6 7
σ(i) 6 7 2 4 3 6 5

(b)(b) Write the following product of nondisjoint cycles in S7 as a product of disjoint cycles:

(1 3 5 7)(2 3 4 5).

(c)(c) What is the cycle type of (1 2)(3 4)? What is the cycle type of (1 2)(2 3)?

(4) Proof of Theorem 1:
(a) What is the key idea to prove part (1) of Theorem 1?
(b) Prove part (2) of Theorem 1.
(c) Prove part (1) of Theorem 1.
(d) Prove3 part (3) of Theorem 1.

THEOREM 2: Let n ≥ 1 be an integer, and consider the symmetric group Sn.
(1) Every permutation σ ∈ Sn is equal to a product of transpositions; thus, Sn is generated4by

transpositions.
(2) For a fixed σ ∈ Sn, either

• every expression of σ as a product of transpositions involves an even number of transposi-
tions, or
• every expression of σ as a product of transpositions involves an odd number of transpositions.

In the first case, we say that σ is an even permutation and define sign(σ) = 1; in the second case, we say
that σ is an odd permutation and define sign(σ) = −1.

(5)(5) Signs of permutations:
(a)(a) What is the sign of a transposition? Of a 3-cycle? Of a p-cycle? (Hint: Use the Lemma.)
(b)(b) If the cycle type of σ is m1,m2, . . . ,mt, then what is the sign of σ?

(6) Proving Theorem 2:
(a) Prove the Lemma.
(b) Explain how part (1) of Theorem 2 follows from the Lemma and Theorem 1.
(c) Explain why part (2) of Theorem 2 reduces to the following claim: if τ1, . . . , τm are transpositions

and τ1 · · · τm = e, then m is even.
(d) By way of contradiction, suppose that there exists

(†) (a1 b1)(a2 b2) · · · (am bm) = e with m odd.

(Here ai 6= bi but ai = aj or ai = bj is allowed.) Explain why, if an example of (†) exists, then
there is a (†) with
• the smallest value of m, among all (†)’s
• among all (†)’s where m is minimal, the number t of times that a1 appears is minimal.

(e) Show that t = 1 is impossible, and that5 if t ≥ 2, one can find another expression with the same
value of m and t and also a1 = a2. Complete the proof.

3Hint: Let σ = τ1 · · · τm with τi disjoint cycles, and j ∈ [n]. Then j appears in at most one τi. Show that, for such i,
σk(j) = τki (j) and use this to solve for τi.

4Recall that a group G is generated by a set S if every element of G can be written as a product of elements of S and their
inverses.

5Hint: Use the identities (cd)(ab) = (ab)(cd) and (bc)(ab) = (ac)(bc).


