
Introduction to Modern Algebra I UNL | Fall 2025

Problem Set 9
Due Thursday, November 6

Instructions: You are encouraged to work together on these problems, but each student should
hand in their own final draft, written in a way that indicates their individual understanding of the
solutions. Never submit something for grading that you do not completely understand. You cannot
use any resources besides me, your classmates, and our course notes.

I will post the .tex code for these problems for you to use if you wish to type your homework.
If you prefer not to type, please write neatly. As a matter of good proof writing style, please use
complete sentences and correct grammar. You may use any result stated or proven in class or in a
homework problem, provided you reference it appropriately by either stating the result or stating
its name (e.g. the definition of ring or Lagrange’s Theorem). Please do not refer to theorems by
their number in the course notes, as that can change.

Problem 1. Prove that there is no simple group of order 48.

Proof. Let G be a group of order 48. By Sylow’s Theorem, the number of Sylow 2-subgroups
divides 3, so is either equal to 1 or 3. If there is only one Sylow 2-subgroup, it is normal, so G
is not simple. Suppose that G has 3 Sylow 2-subgroups. Then G acts on the set X of Sylow 2-
subgroups by conjugation, and this action is transitive by Sylow’s Theorem; in particular, the action
is nontrivial. This induces a permutation representation ρ : G → S3. Since |G| = 48 > 6 = |S3|,
this map cannot be injective, so the kernel of ρ is a nontrivial normal subgroup of G; it is proper
since ρ is nontrivial. Thus, in either case G is not simple.

Problem 2. Let Cn denote the cyclic group of order n > 2, and consider the group

(Z/n)× = {[j]n | gcd(j, n) = 1}

with the binary operation given by the usual multiplication. Prove that

Aut(Cn) ∼= (Z/n)×.

Proof. Let Cn = 〈x | xn = e〉. By the Universal Mapping Property for cyclic groups, each group
homomorphism Cn → Cn is uniquely determined by the image of x. The possible images for x
are the n elements in Cn, which are xi ∈ Cn for 0 6 i < n. Let ρi : Cn → Cn be the unique
homomorphism determined by ρi(x) = xi. We have for now shown that

Aut(Cn) = {ρi | 0 6 i < n}.

Note that im(ρi) = 〈xi〉, and we proved in class that 〈xi〉 = Cn if and only if gcd(i, n) = 1. Note
moreover that if ρi is surjective, then it must also be injective, given that it is a function between
two finite sets of the same order. Thus

ρi ∈ Aut (Cn) if and only if [i]n ∈ (Z/n)×.

Now consider ϕ : Aut (Cn)→ (Z/n)× given by

ϕ(ρi) = [i]n.
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Note that
(ρi ◦ ρj)(x) = xij = ρij (mod m)(x).

The uniqueness part of the UMP for cyclic groups implies that

ρi ◦ ρj = ρij (mod m).

Hence,
ϕ(ρi ◦ ρj) = ϕ

(
ρij (mod m)

)
= [ij]n = [i]n[j]n = ϕ(ρi)ϕ(ρj).

Thus ϕ is a group homomorphism.
Given [j]n ∈ (Z/n)×, by the UMP for cyclic groups there exists a unique homomorphism

ψ([j]n) : Cn → Cn

that takes x 7→ xj . This gives us a map ψ : (Z/n)× → Aut(Cn). We need to show that ψ is
well-defined both in terms of independence of representative in (Z/n)× but also in terms of the the
image landing in the automorphism group of Cn.1 Indeed,

i ≡ i′ (mod n) =⇒ xi = xi
′ ∈ Cn =⇒ ψ([i]n) = ψ([i′]n).

Thus the definition of ψ does not depend on the choice of representative i for the class [i]n. Moreover,
the image of ψ([i]n) is the subgroup 〈xi〉 of Cn, and since gcd(i, n) = 1, we know that 〈xi〉 = Cn.
This shows that ψ([i]n) is surjective, and hence bijective because its domain and codomain have the
same number of elements. This shows that ψ is a well-defined function whose codomain is indeed
Aut(Cn).

Finally,
ψ(ϕ(ρi)) = ψ([i]n) = ψi ϕ(ψ([i]n) = ϕ(ρi) = [i]n.

Therefore, ϕ is a group isomorphism, as desired.

Problem 3. Prove that2 the quaternion group Q8 is not isomorphic to a semidirect product of
nontrivial groups H,K.

Proof. It follows from results proven in class that Q8 is isomorphic to H oρ K if and only if there
exist H ′ and K ′ such that H ′ E Q8, K

′ ≤ Q8, H
′K ′ = Q8, H

′ ∩K ′ = {e}, H ′ ∼= H and K ′ ∼= K.
However, any nontrivial subgroup contains the element −1, since the square of any element besides
±1 is −1. Thus, no such subgroups H ′,K ′ exist.

Problem 4.

(a) Show that there exists a nonabelian group of order 63.

Proof. We will show that there exists a nontrivial homomorphism ρ : Z/9→ Aut(Z/7). As a
consequence, the semidirect product Z/7 oρ Z/9 is a nonabelian group.

Since Z/9 is a cyclic group generated by 1, the UMP for cyclic groups says that to any
homomorphism ρ : Z/9 → Aut(Z/7) is completely determined by α = ρ(1), and that any
α ∈ Aut(Z/7) such that α9 = id gives rise to such a homomorphism. Moreover, we showed in
Problem Set 8 that each f ∈ Aut(Z/7) corresponds to an element a ∈ (Z/7)×, with f(i) = ai.

1Note that in principle ψ([j]n) could simply be a homomorphism Cn → Cn, rather than an isomorphism.
2Hint: You can use without proof that every subgroup of Q8 is normal.
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So consider the automorphism f : Z/7 −→ Z/7 given by

f(i) = 2i.

Note that 2 is indeed invertible in Z/7. Moreover, for all i ∈ Z/7 we have

f3(i) = 2(2(2i)) = 8i = i,

so f3 = id. As a consequence, f9 = id, and thus by the UMP for cyclic groups there is a
homomorphism ρ : Z/9→ Aut(Z/7) with

ρ(1) = f.

Since f 6= id then ρ is a nontrivial homomorphism, and we conclude that

Z/7 oρ Z/9

is a nonabelian group.

(b) Give a presentation for the group you found, with justification.

Proof. To give a presentation for this group, let x = (1, 0) and y = (0, 1), and note that
Z/7 oρ Z/9 is generated by x and y: indeed, for any a ∈ Z/7 and b ∈ Z/9 we have

(a, b) = (1, 0)a(0, 1)b = xayb.

Note also that
x7 = (7, 0) = (0, 0) and y9 = (0, 9) = 0.

Moreover,

yx = (0, 1)(1, 0) = (0 + ρ(1)(1), 1 + 0) = (f(1), 1) = (2, 1) = x2y.

We claim that
〈x, y | x7 = e, y9 = e, yx = x2y〉

is a presentation for Z/7 oρ Z/9. So let

G = 〈u, v | u7 = e, v9 = e, vu = u2v〉.

By the UMP for presentations, since x and y satisfy

x7 = e, y9 = e, yx = x2y,

then there exists a homomorphism ϕ : G→ Z/7 oρ Z/9 given by

ϕ(u) = x and ϕ(v) = y.

We showed that x and y generate Z/7 oρ Z/9, so this homomorphism must be surjective. In
particular, |G| > |Z/7 oρ Z/9| = 7 · 9 = 63.
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On the other hand, in G, any element can3 be written as uavb for some integers a and b by
replacing v2u by uv. so that Since u7 = e and v9 = e, any element in G can then be written
as

uavb where 0 6 a 6 6 and 0 6 b 6 8.

There are 9 · 7 = 63 expressions of this form, and thus |G| > 63. We conclude that

|G| = 63 = |Z/7 oρ Z/9|,

so that the surjective map ϕ must in fact be an isomorphism, proving that

〈x, y | x7 = e, y9 = e, yx = x2y〉

is a presentation for Z/7 oρ Z/9.

3Indeed, any element can be written in the form g = ui1vj1 · · ·uimvjm for some integers it, jt by definition of free
group, and using the relations u7 = e and v9 = e in G we can take it, jt ≥ 0. We show the claim holds for any g with
an expression of this form by induction on n =

∑
it +

∑
jt. We can take n = 0 as the base case, in which g = e

and the claim is clear. Then for an arbitrary element g as above with n ≥ 1, we can either write g = g′u, g = g′v
and rewrite g′ = uivj by induction hypothesis. Then g′v = uivj+1 and g′u = uivju = ui+1v2j (using the relation
vu = u2v repeatedly) completing the induction and justifying the claim.
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