
Introduction to Modern Algebra I UNL | Fall 2025

Problem Set 4
Due Thursday, September 25

Instructions: You are encouraged to work together on these problems, but each student should
hand in their own final draft, written in a way that indicates their individual understanding of the
solutions. Never submit something for grading that you do not completely understand. You cannot
use any resources besides me, your classmates, and our course notes.

I will post the .tex code for these problems for you to use if you wish to type your homework.
If you prefer not to type, please write neatly. As a matter of good proof writing style, please use
complete sentences and correct grammar. You may use any result stated or proven in class or in a
homework problem, provided you reference it appropriately by either stating the result or stating
its name (e.g. the definition of ring or Lagrange’s Theorem). Please do not refer to theorems by
their number in the course notes, as that can change.

Problem 1. Let G be a group, and let H and K be finite subgroups of G of relatively prime order;
i.e., gcd(|H|, |K|) = 1. Show that H ∩K = {e}.

Proof. Let g ∈ H ∩ K. By Lagrange’s Theorem, |g| both divides |H| and |K|, and hence their
GCD, which is one. Thus g = e, so H ∩K = {e}.

Problem 2. For k ∈ Z≥2, let Ck denote the cyclic group of order k. Show that for any relatively
prime m,n ≥ 2, there is an isomorphism Cm × Cn

∼= Cmn.

Proof. Fix generators x for Cm and y for Cn so that we have |x| = m and |y| = n. We claim that
|(x, y)| = mn. Indeed,

(x, y)d = (xd, yd) = (eCm , eCn)1 ⇐⇒

{
xd = eCm

yd = eCn

⇐⇒

{
m | d
n | d

⇐⇒ lcm(m,n) | d.

Since gcd(m,n) = 1, we have lcm(m,n) = mn hence the smallest d ≥ 1 so that (x, y)d = (eCm , eCn)
is mn. This shows |(x, y)| = mn in Cm × Cn.

BY the UMP of the cyclic group there is a group homomorphism f : Cmn → Cm × Cn so that
f(ai) = (x, y)i, where a is a generator of Cmn and i ∈ Z is arbitrary. We see that f(ai) = (eCm , eCn)
if and only if (x, y)i = (eCm , eCn) if and only ifmn | i (by the argument above) if an only if ai = eCmn .
Thus ker(f) = {eCmn} and thus f is injective. Since f maps between sets of the same cardinality
mn and is injective it must be bijective, hence an isomorphism.

Problem 3. Let Sn denote the symmetric group on n symbols.

(3.1) Show that2 the sign map Sn → {±1} is a group homomorphism, where {±1} is considered
as a subgroup of R×. The kernel of this map is called the alternating group on n symbols
and denoted An.

Proof. To verify that this is a homomorphism, let σ, τ ∈ Sn; we proceed by cases. If sign(σ) =
sign(τ) = 1, then we can write σ as a product of 2m transpositions for some m and τ as a
product of 2n transpositions; then στ can be written as a product of 2(m+n) transpositions,
so sign(στ) = 1 = sign(σ) · sign(τ). If sign(σ) = 1 and sign(τ) = −1, then we can write σ as a

1The identity element of G1 ×G2 is (eG1 , eG2)
2Your proof should be no more than a few lines.
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product of 2m transpositions for some m and τ as a product of 2n+1 transpositions; then στ
can be written as a product of 2(m+n)+1 transpositions, so sign(στ) = −1 = sign(σ)·sign(τ).
The other cases are similar.

(3.2) Let n ≥ 3. Show that An is generated by the set of 3-cycles (i j k) and disjoint pairs3 of
transpositions (i j)(k `) in Sn.

Proof. We know that every element of An can be written as a product of and even num-
ber transpositions, by definition. Pairing off transpositions, it follows that every element of
An is a product of elements of the form (a b)(c d), with a 6= b and c 6= d, but {a, b} and
{c,d}notnecessarilydisjoint.If{a,b}and{c, d} are disjoint, this is a disjoint pair of transpo-
sitions. If |{a, b} ∩ {c, d}| = 2, then this is the identity, which is redundant in any generating
set. If |{a, b} ∩ {c, d}| = 1, since (a b) = (b a) and (c d) = (d c), without loss of generality we
can write (a b)(c d) = (i j)(j k) = (i j k) for i, j, k distinct. Thus, every element of An is a
product of 3-cycles and pairs of disjoint transpositions, so these elements generate.

Defintion: Let G be a group and N be a subgroup. We say that N is a normal subgroup of G if
for all g in G, we have gNg−1 ⊆ N ; that is, for any g ∈ G and any n ∈ N , we have that gng−1 ∈ N .
We write N E G to say N is a normal subgroup of G.

Problem 4. Let f : G→ H be a group homomorphism.

(4.1) Show that ker(f) E G.

Proof. We already know that ker f is a subgroup of G, so we only need to prove normality.
Consider g ∈ ker f , and any h ∈ G. Then

f(hgh−1) = f(h)f(g)f(h)−1 since f is a homomorphism

= f(h)f(h)−1 since f(g) = eH

= eH ,

so hgh−1 ∈ H. We conclude that H is normal.

(4.2) Show that if K E H, then f−1(K) E G.

Proof. We have already shown that the preimage of a subgroup is a subgroup. We justify
the normality of the preimage. Let g ∈ G and ` ∈ f−1(K). Then f(`) ∈ K and f(g`g−1) =
f(g)f(`)f(g)−1 ∈ K by the normality of K. Therefore g`g−1 ∈ f−1(K) for all g ∈ G and so
gf−1(K)g−1 ⊆ f−1(K) for all g ∈ G. This suffices to prove that f−1(K) E G.

Problem 5. Let G be a group, S a subset of G, and H = 〈S〉.

(5.1) Prove that H E G if and only if gsg−1 ∈ H for every s ∈ S and g ∈ G.

3For n = 3, there are no disjoint pairs of transpositions.
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Proof. Suppose gsg−1 ∈ H for all s ∈ S. Let h ∈ H and g ∈ G. Then h = se11 s
e2
2 · · · senn for

some s1, . . . , sn ∈ S and e1, . . . , en ∈ {±1}. Let g ∈ G. Then

ghg−1 = g(se11 s
e2
2 · · · s

en
n )g−1 = (gse11 g

−1)(gse22 g
−1) · · · (gsenn g−1).

Note that if ei = −1 then gs−1
i g−1 = (gsig

−1)−1 ∈ H. Thus, gseii g
−1 ∈ H for all i, and

hence ghg−1 ∈ H. Therefore, H / G. The reverse implication is true by definition of normal
subgroup.

(5.2) Consider the commutator subgroup of G

[G,G] := 〈aba−1b−1 | a, b ∈ G〉

generated by all the commutators of elements in G. Prove that [G,G] E G.

Proof. Let g ∈ G and s = aba−1b−1. Set x = gag−1 and y = gbg−1, and note that

gsg−1 = xyx−1y−1 ∈ S ⊆ H.

Hence, H E G by (5.1).
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