Introduction to Modern Algebra I UNL | Fall 2025

Problem Set 3

Due Wednesday, September 17

Instructions: You are encouraged to work together on these problems, but each student should
hand in their own final draft, written in a way that indicates their individual understanding of the
solutions. Never submit something for grading that you do not completely understand. You cannot
use any resources besides me, your classmates, and our course notes.

I will post the .tex code for these problems for you to use if you wish to type your homework.
If you prefer not to type, please write neatly. As a matter of good proof writing style, please use
complete sentences and correct grammar. You may use any result stated or proven in class or in a
homework problem, provided you reference it appropriately by either stating the result or stating
its name (e.g. the definition of ring or Lagrange’s Theorem). Please do not refer to theorems by
their number in the course notes, as that can change.

Problem 1. For groups G and H, the group G x H, known as the product of G and H, refers
to the set
Gx H:={(g,h)|g€G, heH}

equipped with the multiplication rule

(91, h1) - (92, h2) :== (91 *G 92, "1 1 ha).
You may take it as a known fact that the product of two groups is also a group.

(1.1) Let G and H be groups, and consider elements g € G and h € H, and the corresponding
element (g,h) € G x H. Show that

lem(ord(g),ord(h)) if ord(g),ord(h) < oo
00 if ord(g) = oo or ord(h) = cc.

ord((g,h)) = {

Proof. First suppose that |g| and |h| are both finite. Let |g| = a and |h| = b, and let
¢ =lem(lgl, |h]). Since ¢ is a multiple of both a and b, we can write £ = ac and ¢ = bd. Then

(9:0) = (9%, 1) = ((9")°, (1)) = (ec,en) = eaxn.

Thus |(g,h)| < £. Moreover, let n := |(g,h)|. Then (¢",h"™) = (g,h)™ = e, so in particular
g" = e and h® = e. By a previous homework problem, we conclude that |g| and |h| both divide
n, and thus n must be a multiple of lem(|g|, |h|). In particular, n > lem(|g|, |h|). We showed
that |(g, h)| < lem(|g|, [n]) and lem(|g], [R[) = [(g, )|, so we must have lem([g], |h]) = [(g, h)].

For the other case, we show the contrapositive. Suppose that (g,h) € G x H has finite order
n. Then

(g" n") = (9, 0)" = (ec, en),

so in particular ¢" = e and A" = e. We conclude that g and A both have finite order. O

(1.2) For each of the following pairs of groups, show that the two groups are not isomorphic.

e (C,+) and (Q,+).
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Proof. These groups are not isomorphic since C and Q have different cardinalities, and
any isomorphism is in particular a bijection of sets. O

e (R\{0},-) and (R, +).

Proof. They are not isomorphic since (R\ {0}, -) has one element of order 2, namely —1,
while every element of (R, +) has infinite order. O

o 7/2xZ/2 and Z/4.

Proof. They are not isomorphic since Z/4 has an element, [1], of order 4 and Z/2 x Z/2
has no such elements. O

[ QS X Z/?) and S4.

Proof. Since | — 1| = 2 and |[1]3] = 3, the element (—1,[1]) in Qg X Z/3 has order
lem(2,3) = 6. We claim that S4 has no elements of order 6. However, S; has no
elements of order 6, as we showed in the previous homework. ]

Problem 2. Let
G=]]2z={(n)izo | ni € Z}
1€EN
be the group whose elements are sequences of integers, equipped with the operation given by
componentwise addition. Let H = (Z,+). Show! that G x H & G.

Proof. Consider the map that prepends an integer to a sequence of integers, more formally

fiGxH—G

f((zi)iENv h) = (h‘7 20521y 22y - - )

We claim that this a group homomorphism. Indeed:

f(zi)ien, a) + f((wi)ien, b) = (a, 20, 21, - . .) + (b, wp, w1, ...) by definition of f
= (a+0b, 20 + wo, 21 + wi,...) by definition of G x H
= f((zi +w;i)i,a +b) by definition of f
= f(((zi)i,a) + ((wi), b)) by definition of G x H

Moreover, this map is surjective, since given any (z;);en,
f((z1,22,23,...),20) = (2i)i-
The map f is also injective: if we denote the constant sequence equal to 0 by 0, then
f((zi)i,h) =0 <= (h,20,21,...) =0 <= h=0and z; =0foralli >0 <= ((z)i,h) =0gxmu-

We have established the desired isomorphism. O

Note: this gives us an example of groups G, H such that there is an isomorphism G x H 2 G but H is nontrivial.
Since G x H = G can be rewritten as G x H = G X {e}, this shows that in general one cannot cancel groups in
isomorphisms between direct products.
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Problem 3. Prove that if f: G — H is a group homomorphism and K < H then the preimage
of K, defined as

fHE)={ge G| flg) € K}
is a subgroup of G.
Proof. Since f is a homomorphism, f(eg) = ey € K, and thus ey € f~}(K) # 2.

If z,y € f71(K), then f(z) € K and f(y) € K. Since f is a homomorphism and K is closed
under multiplication and taking inverses,

flay™) =f@)fly™) = fla)fly) ' €K,

and thus zy~! € f~!1(K). By the One-step subgroup test, we conclude that f~1(K) is a subgroup
of G. 0

Problem 4. Let G be a group.

(4.1) Prove that Aut(G), the set of automorphisms of G, is a group under composition.

Proof. First, we show that composition is an operation on this set: i.e., that the composition
of automorphisms is an automorphism. Let a, € Aut(G). Then each is bijective, so the
composition a o 3 is bijective. To check that « o 8 is a homomorphism, take g,h € G and
compute

aof(g-h)=a(Bg-h)=a(Blg)-B(h)=a(B(g)) - a(B(h)) = (a0 B)(g) - (a0 B)(h).
Thus, composition is an operation on Aut(G).

Now, composition of function is associative, so the operation on Aut(G) is associative. The
identity map I on G is an automorphism, and for any o € Aut(G), we have [oa = a0l = a,
since (I oa)(g) = (o I)(g) = a(g) for all g € G.

Finally, the inverse function of an automorphism is an automorphism, since it is also an
isomorphism from G to itself; the inverse function is the inverse under composition, and
hence an inverse element under the given operation. This completes the verification that
Aut(G) is a group. O

(4.2) For g € G, let 1, : G — G be given by 1,(z) = grg~!. Prove that {1, | g € G} is a subgroup
of Aut(G).

Proof. We first prove v, is a homomorphism. Given a,b € G, we have

Vg(zy) = glzy)g ™" = (929 ") (gyg™") = vg(x)vy(y).

Now we claim 1, is an automorphism. In fact, ¢;-1 is the inverse homomorphism, since
g19g(x) = g7 grg g = @ and Yy (x) = gg gy = .

Let H = {¢yg | g € G}. To show H is a subgroup, note first that H is nonempty since
e € H. We now claim that 14, v, € H, 14 0 9, = 1gp; indeed, for x € X, we have

(g 0 ¥n)(x) = ghawh ™ g~ " = (gh)z(gh) ™" = tgn(x),

and Ygh € H, so H is closed for the product. Finally, we also proved already that for all
r€G, (V) P =1,1 € H,s0 H is closed under inverses. Thus, H is a subgroup of Aut(Q)
by the Two-step test. O
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Problem 5. Prove? LAGRANGE’S THEOREM: If G is a finite group, and H < G is a subgroup,
then |H| divides |G|.

Proof. Let H act on G by left multiplication. We show that every orbit of this action has size |H|.
Indeed, consider g € G and define a function

H — Orbg(g)
h — hg.

I claim this function is bijective. First, note that it is surjective by construction. To see it is
injective, assume f(h) = f(h'). Then hg = h'g, and by the cancellation property we conclude that
h = k', which shows f is injective. Now since f is bijective we conclude that |H| = |Orbg(g)].

The orbits for this action form a partition of G. Since G is finite, there are finitely many orbits,
so we choose representatives g1, ..., gi for each distinct orbit, and we have a disjoint union

G = U Orbp (gi)-

=1

Therefore we have
k k

G| = |Orbp(g:)| = > _|H| =k|H|,

i=1 i=1
and thus |H| divides |G]. O

2Hint: Let H act on G by left multiplication: k- g = hg. You can use that this is an action without verifying it.
Compute the cardinality of each orbit.
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