Problem Set 1 solutions

Problem 1. Let G be a group and $x \in G$ any element. Recall that |x| denotes the *order* of x, defined to be the least integer $n \ge 1$ such that $x^n = e$; if no such integer exists, we say $|x| = \infty$. Also, let |G| denote the cardinality of G; note that |G| is an element of $\{1, 2, 3, \dots\} \cup \{\infty\}$.

- (a) Prove that if |x| = n, then $e, x, ..., x^{n-1}$ are all distinct elements of G.

 Proof. If $e = x^0, x, x^2, ..., x^{n-1}$ are not all distinct, then $x^i = x^j$ for some $0 \le i < j \le n-1$, and thus $x^{j-i} = e$. Since 0 < j i < n, this contradicts the minimality of n.
- (b) Prove that if $|x| = \infty$, then $x^i \neq x^j$ for all positive integers $i \neq j$.

 Proof. Suppose $x^i = x^j$ for some i < j. Multiplying by the inverse of x on the right gives $x^{j-i} = e$ and j i > 0, contradicting the assumption that $|x| = \infty$.
- (c) Conclude that $|x| \leq |G|$ in all cases.

Proof. If |x| = n, then part (a) shows that G contains n distinct elements, and thus $|G| \ge n$. If $|x| = \infty$ then part (b) shows that G has infinitely many distinct elements, and thus |G| is infinite. In either case, we have $|x| \le |G|$.

Problem 2. A group G is called *cyclic* if it is generated by a single element.

(a) Prove that any cyclic group is abelian.

Note: your proof will be very short, as you can use the fact that $x^i x^j = x^{i+j}$ without proof.

Proof. Let G be a cyclic group. Then there is some element x of G such that $G = \{x^i \mid i \in \mathbb{Z}\}$. To show G is abelian, it suffices to show that $x^i x^j = x^j x^i$ for all integers i and j. But this holds because $x^i x^j = x^{i+j} = x^{j+i} = x^j x^i$, which is known as the law of exponents. \square

(b) Prove that $(\mathbb{Q}, +)$ is not a cyclic group.

Proof. If \mathbb{Q} is cyclic, let $\frac{a}{b}$ be a generator, so that in additive notation $\mathbb{Q} = \{\frac{ma}{b} \mid m \in \mathbb{Z}\}$. Note that $a, b \neq 0$ are integers. Now $\frac{a}{2b} \in \mathbb{Q}$, so $\frac{a}{2b} = \frac{ma}{b}$ for some $m \in \mathbb{Z}$. But in \mathbb{Q} we can now divide by $\frac{a}{b}$, concluding that $m = \frac{1}{2}$, which is a contradiction since $\frac{1}{2} \notin \mathbb{Z}$. Thus \mathbb{Q} is not cyclic. \square

(c) Prove that $GL_2(\mathbb{Z}_2)$ is not cyclic.

Proof. By (a), it suffices to prove $GL_2(\mathbb{Z}_2)$ is not abelian. Let

$$A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$$
 and $B = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}$.

Since det(A) = det(B) = 1, both matrices are in $GL_2(\mathbb{Z}_2)$. But $AB \neq BA$.

Problem 3. Let $n \geq 2$, and consider¹ the symmetric group S_n .

(a) Let $\tau \in S_n$ be a permutation, and $(i_1 i_2 \cdots i_k)$ be a k-cycle. Show that

$$\tau(i_1 i_2 \cdots i_k) \tau^{-1} = (\tau(i_1) \tau(i_2) \cdots \tau(i_k)).$$

¹Note: If you are unsure which formulas about permutations require proof, please ask.

Proof. Observe that the left-hand side sends an arbitrary j to j if $\alpha^{-1}(j) \notin \{i_1, \ldots, i_k\}$ and to $\alpha(i_{t+1 \pmod k})$ if $\alpha^{-1}(j) = i_t$ for some t. Equivelently, it sends $\alpha(i_t)$ to $\alpha(i_{t \pmod k})$ and fixes all other elements. This is what the right-hand side does too.

(b) Show that S_n is generated by (12) and the *n*-cycle $(12 \cdots n)$.

Proof. Note: In all calculations below, everything should be read modulo n.

Let $H = \langle (12), (12 \cdots n) \rangle$ be the group generated by (12) and $(12 \cdots n)$. Since every permutation can be written as a product of transpositions, it suffices to show that every transposition is in H. We will use two useful formulas about permutations:

F1:
$$(12 \cdots n)(i \ i+1)(12 \cdots n)^{-1} = (i+1 \ i+2).$$

F2:
$$(ij) = (1j)(1i)(1j)$$
.

Both of these are special cases of (a).

Now let us prove that $H = S_n$ using F1 and F2. Since (12) and $(12 \cdots n)$ are both in H, using F1 repeatedly gives us $(i \ i+1) \in H$ for all i. Now take j = i+1 in F2, which gives us

F3:
$$(i i + 1)(1i)(i i + 1) = (1 i + 1)$$
.

Since $(1\ 2) \in H$ and $(i\ i+1) \in H$ for all i, repeated applications of F3 give us $(1\ j) \in H$ for all j. Finally, since $(1\ i), (1\ j) \in H$ for all i, j, then by F2 we conclude that $(i\ j) \in H$. This shows all transpositions are in H, and thus $H = S_n$.

(c) Show that, if $n \geq 3$, then $Z(S_n) = \{e\}$.

Proof. We again apply part (a) in a special case:

$$\tau(i j) = (\tau(i) \tau(j))\tau$$

for any $\tau \in S_n$ and any 2-cycle (ij). Assume that τ is in the center. Then the above equation gives that $(ij) = (\tau(i)\tau(j))$ and hence either $(\tau(i) = i \text{ and } \tau(j) = j)$ or $(\tau(i) = j \text{ and } \tau(j) = i)$ for all $i \neq j$. We will show that $\tau(i) = i$ for all i. Pick any i. If $\tau(i) \neq i$, then by what we just proved, $\tau(j) = i$ for all $j \neq i$. Since $n \geq 3$, we can find $1 \leq j, k \leq n$ so that i, j, k are distinct, and hence $\tau(j) = i = \tau(k)$, which is not possible.

Problem 4. (a) Suppose the cycle type of $\sigma \in S_n$ is m_1, m_2, \ldots, m_k . Recall this means that σ a product of disjoint cycles of lengths m_1, m_2, \ldots, m_k . Prove that $|\sigma| = \text{lcm}(m_1, \ldots, m_k)$.

(b) Given an example of two permutations σ, τ such that $|\sigma\tau| > \operatorname{lcm}(|\sigma|, |\tau|)$.

Proof. (a) We first consider the case when k = 1; that is, we will first show the order of an m-cycle is m. Given an m-cycle $\alpha = (i_1 i_2 \cdots , i_m)$, note that for any k, we have $\alpha^k(i_j) = i_{j+k \pmod m}$. It follows that $\alpha^m = e$ and, for each $1 \le k < m$, $\alpha^k \ne e$; hence $|\alpha| = m$.

Now we consider the general case. Assume g_1, \ldots, g_k are pairwise disjoint cycles, with g_i a cycle of length m_i , and let $g := g_1 \cdots g_m$. Since these elements g_1, \ldots, g_j are disjoint cycles, and disjoint cycles commute, we have $(g_1 \ldots g_k)^m = g_1^m \cdots g_k^m$ for all m. It follows that if m is a multiple of $|g_i| = m_i$ for each i, then $g_i^m = (g_i^{m_i})^{\frac{m}{m_i}} = e$, and thus $g^m = e$. In particular, $g^{\text{lcm}(m_1,\ldots,m_k)} = e$.

Now suppose $1 \leq m < \text{lcm}(m_1, \dots, m_k)$. We need to prove that $g^m \neq e$. Note that m is not a multiple of m_i for at least one value of i; for notational simplicity and without loss of generality (since we can always renumber the list of cycles), let us assume m_1 does not divide m. Then

$$g_1^m = g_1^m \pmod{m_i} \neq e.$$

Thus there is an integer i with $1 \le i \le n$ such that $g_1^m(i) \ne i$. But since the cycles are disjoint, $g_j(i) = i$ for all $j \ge 2$ and hence also $g_j^m(i) = i$ for all such j. This proves that $g^m = g_1^m \cdots g_k^m$ does not fix i and thus cannot be the identity element.

(b) One can take $\sigma = (1\,2)$ and $\tau = (2\,3)$ in S_3 . Both σ and τ have order 2, whereas $\sigma\tau = (1\,2\,3)$ has order 3.