Introduction to Modern Algebra I UNL | Fall 2025

Problem Set 1 solutions

Problem 1. Let G be a group and x € G any element. Recall that |x| denotes the order of x, defined
to be the least integer n > 1 such that 2™ = e; if no such integer exists, we say |z| = co. Also, let |G|
denote the cardinality of G; note that |G| is an element of {1,2,3,---} U{oco}.

(a)

Prove that if |x| = n, then e, z,..., 2" ! are all distinct elements of G.
Proof. If e = 2% 2,22, ..., 2" ! are not all distinct, then 2’ = 2/ for some 0 < i < j < n — 1,
and thus 277" = e. Since 0 < j — i < n, this contradicts the minimality of n. O

Prove that if |x| = oo, then x? # 27 for all positive integers i # j.

Proof. Suppose z = x/ for some i < j. Multiplying by the inverse of x on the right gives
277" = e and j — i > 0, contradicting the assumption that |z| = oo. O
Conclude that |z| < |G] in all cases.

Proof. If |x| = n, then part (a) shows that G contains n distinct elements, and thus |G| > n.
If |z| = oo then part (b) shows that G has infinitely many distinct elements, and thus |G| is
infinite. In either case, we have |z| < |G]|. O

Problem 2. A group G is called cyclic if it is generated by a single element.

(a)

Prove that any cyclic group is abelian.
Note: your proof will be very short, as you can use the fact that z'z? = 27 without proof.

Proof. Let G be a cyclic group. Then there is some element z of G such that G = {x' | i € Z}.
To show G is abelian, it suffices to show that x'z? = x72* for all integers ¢ and j. But this holds
because ziz! = 2t/ = 27T = 272?, which is known as the law of exponents. O

Prove that (Q, +) is not a cyclic group.

Proof. 1If Q is cyclic, let § be a generator, so that in additive notation Q = {3% | m € Z}. Note
that a,b # 0 are integers. Now 5 € Q, so 55 = % for some m € Z. But in Q we can now divide
by 7, concluding that m = %, which is a contradiction since % ¢ Z. Thus Q is not cyclic. O

Prove that GLg(Zs) is not cyclic.
Proof. By (a), it suffices to prove GLa(Z3) is not abelian. Let

1 1 11
A—(O 1> and B—<1 0).

Since det(A) = det(B) = 1, both matrices are in GLy(Z32). But AB # BA. O

Problem 3. Let n > 2, and consider' the symmetric group Sj,.

(a)

Let 7 € S,, be a permutation, and (i1 i2 - - - i) be a k-cycle. Show that

T(il 19 - - Z'k)Til = (T(il)T(ig) - T(Zk))

!Note: If you are unsure which formulas about permutations require proof, please ask.
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Proof. Observe that the left-hand side sends an arbitrary j to j if a=1(j) ¢ {i1,...,ir} and to
a(it41 (mod k)) if a~1(j) = i; for some t. Equivelently, it sends a(i;) to a(i, (mod k)) and fixes all
other elements. This is what the right-hand side does too. O

Show that S, is generated by (12) and the n-cycle (12---n).
Proof. Note: In all calculations below, everything should be read modulo n.

Let H = ((12),(12---n)) be the group generated by (12) and (12---n). Since every permutation
can be written as a product of transpositions, it suffices to show that every transposition is in
H. We will use two useful formulas about permutations:

Fl: (12--n)(@@ i+ 1)(12---n) P =(+1 i+2).
F2: (i) = (17)(19)(15).
Both of these are special cases of (a).

Now let us prove that H = S,, using F1 and F2. Since (12) and (12---n) are both in H, using
F1 repeatedly gives us (i i+ 1) € H for all i. Now take j =i+ 1 in F2, which gives us

F3:(ii+1)(1i)(ii+1) = (1i+1).

Since (1 2) € H and (i i+ 1) € H for all i, repeated applications of F3 give us (1 j) € H for all
j. Finally, since (1 4),(1 j) € H for all 4, j, then by F2 we conclude that (i j) € H. This shows
all transpositions are in H, and thus H = S,,. O

Show that, if n > 3, then Z(S,,) = {e}.
Proof. We again apply part (a) in a special case:

T(1j) = (r(0) 7(5))7

for any 7 € S,, and any 2-cycle (i j). Assume that 7 is in the center. Then the above equation
gives that (ij) = (7(¢) 7(7)) and hence either (7(i) =i and 7(j) = j) or (7(i) = j and 7(j) = 1)
for all ¢ # j. We will show that 7(i) = i for all 4. Pick any 4. If 7(i) # ¢, then by what we just
proved, 7(j) =i for all j # i. Since n > 3, we can find 1 < j,k < n so that i, j, k are distinct,

and hence 7(j) =i = 7(k), which is not possible. O
Problem 4. (a) Suppose the cycle type of o € S, is m1, ma,...,mg. Recall this means that o a
product of disjoint cycles of lengths mi,ma, ..., mg. Prove that |o| = lem(my, ..., mg).

(b)

Given an example of two permutations o, 7 such that |o7| > lem(|o|, |7]).

Proof. (a) We first consider the case when k = 1; that is, we will first show the order of an m-cycle

is m. Given an m-cycle v = (i1 i3 -~ ,ip), note that for any k, we have a®(i;) = i; (mod m)-
It follows that o™ = e and, for each 1 < k < m, a¥ # e; hence |a| = m.
Now we consider the general case. Assume gi,..., g are pairwise disjoint cycles, with g; a

cycle of length m;, and let g := g1 ---gp. Since these elements g1,...,g; are disjoint cycles,
and disjoint cycles commute, we have (g1...gx)" = g{"---gp" for all m. It follows that if m

is a multiple of |g;| = m; for each i, then g/ = (g;"")™ = e, and thus g™ = e. In particular,
glcm(n’n,...,m;C —e.



Introduction to Modern Algebra I UNL | Fall 2025

Now suppose 1 < m < lem(my,...,my). We need to prove that g # e. Note that m is not a

multiple of m; for at least one value of 7; for notational simplicity and without loss of generality

(since we can always renumber the list of cycles), let us assume my does not divide m. Then
g{n _ g;n (mod m;) £e.

Thus there is an integer ¢ with 1 < ¢ < n such that ¢7*(i) # i. But since the cycles are disjoint,

g;(1) =i for all j > 2 and hence also gj"(i) = i for all such j. This proves that ¢ = g{"--- gi"

does not fix ¢ and thus cannot be the identity element.

One can take o0 = (12) and 7 = (23) in S3. Both o and 7 have order 2, whereas o7 = (123)
has order 3.
O



