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Problem Set 1 solutions

Problem 1. Let G be a group and x ∈ G any element. Recall that |x| denotes the order of x, defined
to be the least integer n > 1 such that xn = e; if no such integer exists, we say |x| =∞. Also, let |G|
denote the cardinality of G; note that |G| is an element of {1, 2, 3, · · · } ∪ {∞}.

(a) Prove that if |x| = n, then e, x, . . . , xn−1 are all distinct elements of G.

Proof. If e = x0, x, x2, . . . , xn−1 are not all distinct, then xi = xj for some 0 6 i < j 6 n − 1,
and thus xj−i = e. Since 0 < j − i < n, this contradicts the minimality of n.

(b) Prove that if |x| =∞, then xi 6= xj for all positive integers i 6= j.

Proof. Suppose xi = xj for some i < j. Multiplying by the inverse of x on the right gives
xj−i = e and j − i > 0, contradicting the assumption that |x| =∞.

(c) Conclude that |x| 6 |G| in all cases.

Proof. If |x| = n, then part (a) shows that G contains n distinct elements, and thus |G| > n.
If |x| = ∞ then part (b) shows that G has infinitely many distinct elements, and thus |G| is
infinite. In either case, we have |x| 6 |G|.

Problem 2. A group G is called cyclic if it is generated by a single element.

(a) Prove that any cyclic group is abelian.

Note: your proof will be very short, as you can use the fact that xixj = xi+j without proof.

Proof. Let G be a cyclic group. Then there is some element x of G such that G = {xi | i ∈ Z}.
To show G is abelian, it suffices to show that xixj = xjxi for all integers i and j. But this holds
because xixj = xi+j = xj+i = xjxi, which is known as the law of exponents.

(b) Prove that (Q,+) is not a cyclic group.

Proof. If Q is cyclic, let a
b be a generator, so that in additive notation Q = {ma

b | m ∈ Z}. Note
that a, b 6= 0 are integers. Now a

2b ∈ Q, so a
2b = ma

b for some m ∈ Z. But in Q we can now divide
by a

b , concluding that m = 1
2 , which is a contradiction since 1

2 /∈ Z. Thus Q is not cyclic.

(c) Prove that GL2(Z2) is not cyclic.

Proof. By (a), it suffices to prove GL2(Z2) is not abelian. Let

A =

(
1 1
0 1

)
and B =

(
1 1
1 0

)
.

Since det(A) = det(B) = 1, both matrices are in GL2(Z2). But AB 6= BA.

Problem 3. Let n ≥ 2, and consider1 the symmetric group Sn.

(a) Let τ ∈ Sn be a permutation, and (i1 i2 · · · ik) be a k-cycle. Show that

τ(i1 i2 · · · ik)τ−1 = (τ(i1) τ(i2) · · · τ(ik)).

1Note: If you are unsure which formulas about permutations require proof, please ask.
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Proof. Observe that the left-hand side sends an arbitrary j to j if α−1(j) /∈ {i1, . . . , ik} and to
α(it+1 (mod k)) if α−1(j) = it for some t. Equivelently, it sends α(it) to α(it (mod k)) and fixes all
other elements. This is what the right-hand side does too.

(b) Show that Sn is generated by (12) and the n-cycle (12 · · ·n).

Proof. Note: In all calculations below, everything should be read modulo n.

Let H = 〈(12), (12 · · ·n)〉 be the group generated by (12) and (12 · · ·n). Since every permutation
can be written as a product of transpositions, it suffices to show that every transposition is in
H. We will use two useful formulas about permutations:

F1 : (12 · · ·n)(i i+ 1)(12 · · ·n)−1 = (i+ 1 i+ 2).

F2 : (ij) = (1j)(1i)(1j).

Both of these are special cases of (a).

Now let us prove that H = Sn using F1 and F2. Since (12) and (12 · · ·n) are both in H, using
F1 repeatedly gives us (i i+ 1) ∈ H for all i. Now take j = i+ 1 in F2, which gives us

F3 :(i i+ 1)(1i)(i i+ 1) = (1 i+ 1).

Since (1 2) ∈ H and (i i+ 1) ∈ H for all i, repeated applications of F3 give us (1 j) ∈ H for all
j. Finally, since (1 i), (1 j) ∈ H for all i, j, then by F2 we conclude that (i j) ∈ H. This shows
all transpositions are in H, and thus H = Sn.

(c) Show that, if n ≥ 3, then Z(Sn) = {e}.
Proof. We again apply part (a) in a special case:

τ(i j) = (τ(i) τ(j))τ

for any τ ∈ Sn and any 2-cycle (i j). Assume that τ is in the center. Then the above equation
gives that (i j) = (τ(i) τ(j)) and hence either (τ(i) = i and τ(j) = j) or (τ(i) = j and τ(j) = i)
for all i 6= j. We will show that τ(i) = i for all i. Pick any i. If τ(i) 6= i, then by what we just
proved, τ(j) = i for all j 6= i. Since n ≥ 3, we can find 1 ≤ j, k ≤ n so that i, j, k are distinct,
and hence τ(j) = i = τ(k), which is not possible.

Problem 4. (a) Suppose the cycle type of σ ∈ Sn is m1,m2, . . . ,mk. Recall this means that σ a
product of disjoint cycles of lengths m1,m2, . . . ,mk. Prove that |σ| = lcm(m1, . . . ,mk).

(b) Given an example of two permutations σ, τ such that |στ | > lcm(|σ|, |τ |).

Proof. (a) We first consider the case when k = 1; that is, we will first show the order of an m-cycle
is m. Given an m-cycle α = (i1 i2 · · · , im), note that for any k, we have αk(ij) = ij+k (mod m).

It follows that αm = e and, for each 1 6 k < m, αk 6= e; hence |α| = m.

Now we consider the general case. Assume g1, . . . , gk are pairwise disjoint cycles, with gi a
cycle of length mi, and let g := g1 · · · gm. Since these elements g1, . . . , gj are disjoint cycles,
and disjoint cycles commute, we have (g1 . . . gk)m = gm1 · · · gmk for all m. It follows that if m

is a multiple of |gi| = mi for each i, then gmi = (gmi
i )

m
mi = e, and thus gm = e. In particular,

glcm(m1,...,mk) = e.
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Now suppose 1 6 m < lcm(m1, . . . ,mk). We need to prove that gm 6= e. Note that m is not a
multiple of mi for at least one value of i; for notational simplicity and without loss of generality
(since we can always renumber the list of cycles), let us assume m1 does not divide m. Then

gm1 = g
m (mod mi)
1 6= e.

Thus there is an integer i with 1 6 i 6 n such that gm1 (i) 6= i. But since the cycles are disjoint,
gj(i) = i for all j > 2 and hence also gmj (i) = i for all such j. This proves that gm = gm1 · · · gmk
does not fix i and thus cannot be the identity element.

(b) One can take σ = (1 2) and τ = (2 3) in S3. Both σ and τ have order 2, whereas στ = (1 2 3)
has order 3.

3


