Introduction to Modern Algebra I UNL | Fall 2025

Problem Set 12

Due Thursday, December 4

Instructions: You are encouraged to work together on these problems, but each student should
hand in their own final draft, written in a way that indicates their individual understanding of the
solutions. Never submit something for grading that you do not completely understand. You cannot
use any resources besides me, your classmates, and our course notes.

I will post the .tex code for these problems for you to use if you wish to type your homework.
If you prefer not to type, please write neatly. As a matter of good proof writing style, please use
complete sentences and correct grammar. You may use any result stated or proven in class or in a
homework problem, provided you reference it appropriately by either stating the result or stating
its name (e.g. the definition of ring or Lagrange’s Theorem). Please do not refer to theorems by
their number in the course notes, as that can change.

Problem 1. Let I = (2,z) in R = Zlx].

(a) Show that m = (2,z) is a maximal ideal.
Proof. Consider the ring homomorphism evg : Z[x] — Z given by evaluation at 0. On the
one hand, this map is surjective, as any n € Z can be obtained by evaluating the constant
polynomial n: evg(n) = n. The kernel of evy is the set of polynomials with zero constant term,
which are the multiples of x, so ker(evg) = (z). By the First Isomorphism Theorem for rings,

we conclude that
Zla)/(x) 2 Z.

Moreover, under this isomorphism I/(x) corresponds to evy(I). Since I is the set of all poly-
nomials with even constant term, we conclude that I/(z) corresponds to evg(l) = (2) under
the isomorphism

above. Thus
(Z]x]/(x))/(I/(x)) = Z/(2).
By the Third Isomorphism Theorem for rings,

Zlz] /1 = (Z]x]/(2)) /(1] ().

Therefore,
Zlz]/I =7Z/(2). O

Now note that Z/(2) is a field, and thus I must be a maximal ideal.
(b) Show that (2,z) is not a principal ideal.

Proof. Suppose by way of contradiction that (2,x) = (f) for some f € Z[z]. Since 2 € (f), we
have 2 = fg for some g € Z[z]. Since Z is a domain,

0 =deg2 = deg(fg) = deg f + degy,
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and since f, g # 0 we conclude that

deg(f) = deg(g) = 0.

Hence f and g are constant polynomials, say f = p and g = ¢q with p,q € Z. Therefore, 2 = pq
in Z, and since 2 is a prime integer either p = +1 and ¢ = +2 or p = £2 and ¢ = £1. We
conclude that either (f) = R or (f) = (2). We will show that both of these are impossible.

Suppose that I = (2,2) = R. Then 1 € (2, z), so there exist u,v € Z[z] such that
= 2u + zv.
The constant term of the polynomial 1 is the integer 1, while the constant term of 2u + zv is

twice the constant term of u, and thus even. This is a contradiction, so (2,z) # R.

If I = (2,z) = (2), then x € (2), and thus 2 = 2h for some polynomial h € Z[z]. Again
this leads to a contradiction: every nonzero coefficient of the polynomial x is odd, while every
nonzero coefficient of the polynomial 2h is even.

We conclude that (2,z) cannot be principal. O

Problem 2. Let I and J be ideals of a commutative ring R with 1 # 0. You can use without proof
that I 4+ J, INJ, and IJ are ideals of R.

(a)

Show that IJ C INJ.

Proof. Recall that
n
I1J = {Zazbz ‘ n>0,a; € 1,b; € J} .
i=1
Given a € I and b € J, since J is an ideal we have ab € J, and since I is an ideal we have
ab € I. We conclude that ab € I N J. Moreover, I N J is an ideal and thus closed for sums, so

for any a1,...,a, € I and by,...,b, € J we must then have
n
Zaibi elJ.
i=1
Thus IJ C I NJ always holds. O

Give an example where I.J # I N J.

Proof. Consider the ring R = k[x], where k is any field, and let ] = J = (z). Then INJ =
I=(z),but IJ=1%=(2?)#1InNJ. O

Suppose that I + J = R. Show that IJ =1nNJ.

Proof. If I + J = R, then there exist ¢ € I and j € J such that ¢ +j = 1. Let « € I N J, then
a=a-1=a-(i+j) =ai+aj € IJ and thus it follows that I NJ C IJ under the given
hypotheses. O

Suppose m and n are distinct maximal ideals of a commutative ring R. Prove that mn = mnNn.

Hint: First consider m + n.
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Proof. First note that m + n is an ideal, and contains both m and n. Hence, m 4+ n properly
contains both (as m # n), so we must have m +n = R. We conclude that m Nn = mn. O

Suppose that I + J = R. Show that there is a ring isomorphism R/(INJ) = R/I x R/J.

Proof. Let f: R — R/I x R/J be defined by
fr)=(r+1Lr+J).
This is a ring homomorphism:

o fr+s)=@r+s+Lir+s+JJ)=r+ILr+J)+(s+1,s+J)=f(r)+ f(s)
o frs)=(rs+IL,rs+J)=(r+1,s+1)(r+J,s+J)=f(r)f(s).
o f(Ar) =1+ 1,1+ J)=1g/1xR/J-

Note that
ker(f)={reR|r+I=0+Tandr+J=0+J}={reR|relandreJ}=1INJ.

Moreover, we claim that f is surjective. Since I + .J = R, there exist ¢« € I and j € J such that
i+j=1. Set z :=rj + si. Now given any (r+ I,s+ J), note that si,ri € [ and rj,sj € J, so

z+Il=rj+si+l=rj+Il=r(l—i)+I=r—ri+l=r+1

. 2+J=rjt+si+J=si+J=s(1-j)+J=s—sj+J=s5+J.
Thus
(r+1,s+J)=z+I1z+J)=f(2).
By the UMP of quotient rings there is a well-defined ring homomorphism
f:R/(INJ)—= R/IxR/J

given by

fr+InJ)=(r+1,r+J).

Moreover, its kernel is {0}, since ker f = I N J, and f is surjective since f is surjective. This
shows f is an isomorphism. O

Problem 3. Let R be a commutative ring. Prove' that the set of prime ideals of R has a minimal
element with respect to inclusion.

Proof. Let A be the collection of all prime ideals of R. Make A into a poset by declaring p < ¢
if and only if p O g. The axioms of a poset are easy to verify. We show the hypotheses of Zorn’s
Lemma are met.

Since R # 0, it has at least one maximal ideal, and every maximal ideal is prime. This shows

that A is nonempty.

Let B be any totally ordered subset of A. Given the definition of <, this means that for p,q € B,

either p D q or ¢ D p. If B is empty, then any element of A serves as an upper bound of it for <.

!Note: (0) is not prime unless R is a domain.
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Assume B is non-empty, and consider I = ﬂpe g B. We claim I is a prime ideal, and hence is in
A. As stated in class, an arbitrary intersection of ideals is an ideal, and thus it remains to show [
is a prime ideal. Since B is nonempty, I is a proper ideal. (Note that the empty intersection is R:
this is only place where B being nonempty is used.) Pick z,y € R\ I. Then x ¢ p for some p € B
and y ¢ ¢ for some g € B. Since B is totally ordered, p O ¢ or ¢ 2O p, and thus either x,y ¢ ¢ or
x,y ¢ p and hence, since p and ¢ are prime ideals, we have xy ¢ q or zy ¢ p. Either way, zy ¢ B.
This proves [ is a prime ideal. Clearly, p O I for all p € B and so [ is an upper bound of B in A
for <.

We may thus apply Zorn’s element, which states that A has a maximal element for <. That is,
there exists a prime ideal p such that if p O ¢ for another prime ideal ¢, then p = q. O

For the remaining problem, you can use the following theorem, to be covered next Monday.
THEOREM: Let R be a commutative ring, and g = a,z™ + - - - + a1 + ap a polynomial in R[z] with
ap a unit in R. Then for any f € R[z], there exists a unique pair of polynomials ¢, € R[x| such
that

o f=qgg+r, and
e =0 or deg(r) < deg(g).

DEFINITION: Let R be a commutative ring, and f € R[x] a polynomial. We say that » € R is a
root of f if ev,.(f) =0.

Problem 4. Let R be a commutative ring and f € R[z].
(a) Show that if r € R is a root of f, then f is a multiple of the polynomial x — r in R[z].

Proof. By the given Theorem, we may write f = (z — r)q + p for some polynomial g € R]z]
and some s € R[x] such that deg(s) = 0 or s = 0; i.e., either way, s is a constant polynomial.
We have

evy(f) =evr(q(z — 1)+ s) =eve(qeve(z — 1) +evy(s) =evp(q) - 0+ s =,

and thus if r is a root, s = ev,(f) = 0, so f = (z—7r)q, showing that f is a multiple of x —r. [
(b) Show that if R is an integral domain and deg(f) = d, then f has at most d roots.

Proof. We will show that if f has at least d roots in R, then deg(f) > d. We proceed by
induction on d. If d = 1, then we can write f = ax + b, and if ar +b = 0 = ar’ + b, then
a(r —r') =0 implies r — 1/ = 0, so r = 7/, and thus f has at most one root.

Now suppose the claim is true for polynomials with at least d — 1 roots, and suppose that f
has roots r1,...,7q € R, with r; # r; for all ¢ # j. By part (a) we can write f = q(x —rq). For
i=1,...,d—1, we have

0=-ev,,(f) =ev(qevy(x —rg),

and ev, (x —rq) =1; —rq # 0, so evy,(q) = 0 using that R is an integral domain. Thus, ¢ is a
polynomial with at least d — 1 roots, namely 7r1,...,74-1, and so by the induction hypothesis,
deg(q) > d — 1. Then, by a previous exercise, since R is a domain, we have

deg(f) = deg(q) + deg(z — ) = d.

This completes the induction.

To get the given statement, note that if deg(f) = d and f does not at most d roots, then f has
at least d 4+ 1 roots, contradicting what what we just showed. O
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(c) Give an example of a polynomial f over a commutative ring R that has more than deg(f) roots
in R.

Proof. There are many examples, e.g., #? — [1] has four roots in (Z/3 x Z/3)[x], namely

([ [, ([ £20), (121, 110D, (121, 2])- N
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