Introduction to Modern Algebra I UNL | Fall 2025

Final Exam

Instructions: Solve two problems from Part 1 and two problems from Part 2. You may use any
results proved in class or in the problem sets, except for the specific question being asked. You
should clearly state any facts you are using. You are also allowed to use anything stated in one
problem to solve a different problem, even if you have not yet proved it. Remember to show all
your work, and to write clearly and using complete sentences. No calculators, notes, cellphones,
smartwatches, or other outside assistance allowed.

Part 1: Groups
Choose two of the following problems.
(1) (a) Show that there exists a nonabelian group of order 27.

Proof. We will construct a nonabelian semidirect product of Z/9 by Z/3, which has order
9.3 = 27. To this end, first note that the map ¢ of multiplication by [4] in Z/9 is group
automorphism that has order 3 in Aut(Z/9). Indeed, we have

¢*(In]) = [4]°[n] = [64][n] = [1][n] = [n]

in Z/9, so ¢3 is the identity in Aut(Z/9), and ¢ is not the identity itself since ¢([1]) = [4].
Thus, by the UMP of cyclic groups, there is a homomorphism ¢ : Z/3 — Aut(Z/9) given
by 1([1]) = ¢. Then the group Z/9 %, Z/3 is a nonabelian group of order 27. O

(b) Give, with justification, a presentation for the group you found in part (a).

Proof. We claim that (z,y | 2° = y3 = e,yz = x'y) is a presentation for the group

G =17/9 %y Z/3. Let H be the group with presentation (z,y | 2% = y® = e,yz = 21y).
Note that G is generated by the elements g := ([1],[0]) and h := ([0],[1]), since we can
write an arbitrary element ([i], [1]) as ([i], [0])([0], [j]) = g°h’ (here we are abusing notation
by using multiplicative notation in terms of g and h). Note also that the relations ¢° = e,
h? = e hold in G, as well as

hg = (¥([1]), [1]) = (4], [1]) = g*h.

It follows from the UMP for presentations that there is a unique homomorphism o : H — G
given by a(z) = g, a(y) = h. Since g,h € im(a), we have G = (g,h) C im(a) C G, so «
is surjective. Then by using the relations z° = y3 = e in H, we can rewrite any element
as products of z* and 3/ with 0 < i < 9, 0 < j < 3. Then using the relation yz = z*y,
we can rewrite any element as a product with a power of x on the left and a power of y
on the right, and again using the relations 29 = 3 = e, in the form z’y/ with 0 < i < 9,
0 < j < 3. This shows that |H| < 27. It follows that o must also be injective, hence an
isomorphism. This justifies the presentation claimed. O
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(2) Prove that no group of order 224 = 25 - 7 is simple.

Proof. By the Sylow Theorem, we have that the number of Sylow 2-subgroups is congruent to
1 modulo 2 and divides 7, hence is either 1 or 7.

If there is only one, then it is normal, and in particular a nontrivial proper normal subgroup,
so GG is not simple.

Consider the case that there are seven Sylow 2-subgroups. Then G acts on the set of these
seven Sylow 2-subgroups by conjugation. By the Sylow Theorem, this action is transitive, and
in particular nontrivial. Consider the permutation representation p : G — S7 associated to
this action (where we have identified Perm(Syly(G)) with S7). We claim that the kernel of
p is a nontrivial proper normal subgroup. Since p corresponds to a nontrivial action, it is a
nontrivial homomorphism, so ker(p) is a proper subgroup of G. To see that ker(p) is nontrivial,
suppose for a contradiction that p is injective. Then G = im(p) < S7, so |G| divides |S7| = 7!
by Lagrange. But |G| = 2°-7 and 7! = 7-5-32-2% so this is not true, and thus p is not
injective. It follows that the kernel of p is a nontrivial proper normal subgroup, so G is not
simple in this case either. ]
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(3) Prove that Q/Z is not a finitely generated group.

Proof 1. To obtain a contradiction, suppose that Q/Z is finitely generated. Let

aq ag at
—+Z,—+Z,...,—+Z

be a generating set. Consider ﬁ +7Z € Q/Z. We must then have

a;
- 7= Tty
leu_bt+ ;nzbi—i-

for some ny,...,ns € Z. This means
1 Qg
72()1"-1),5 no+zi:nzl)i

for some ng, n1,...,nt € Z, so we have

1=2by---bs + ZQTLZ'GZ'CZ'
7

where ¢; = by---b/b; € Z. Note that this is an equation of integers. But this yields a
contradiction, as the left-hand side is odd and the right-hand side is even. We conclude that
no finite generating set exists; i.e., this is not a finitely generated group. O

Proof 2. To obtain a contraction, suppose that Q/Z is finitely generated. Since this is a quotient
of an abelian group, it is abelian, so it is a finitely generated abelian group. Then by the
structure theorem for finitely generated abelian groups, we have an isomorphism

Q/Z=7" X Z/ny X -+ X L]ny.

Note first that » = 0; if 7 > 0, then these is an element of infinite order in the RHS, but any
element ¢ + Z € Q/Z has finite order (since b (% +Z) = a+ Z = 0+ Z). But if r = 0, then
the RHS is a finite group, and Q/Z is infinite (e.g., % + Z are distinct). This gives the desired
contraction. O
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Part 2: Rings

Choose two of the following problems.

(4) Let R be aring. Let I and J be ideals of R, and recall that [ + J={a+b|ac I, be J}.

(a)

Show that if I = (S) and J = (T') for some subsets S,T C R, then [ +J = (SUT).

Proof 1. By definition (S) is the smallest ideal containing S.

To show that I+ J C (SUT), note that (SUT) is an ideal containing S and T, and hence
containing (S) =1 and (T)) = J. Thenifa € I and b € J, since a,b € (SUT) and (SUT)
is an ideal, a + b€ (SUT).

To show that (SUT) C I + J, recall that I + J is an ideal, and S C I C I 4+ J and
TCJCI+Jimply SUTCI+J, 50 (SUT)CI+J. O

Proof 2. We have the concrete description (S) = {>_risir} | s; € S,ri, 7. € R}.

To show that I +J C (SUT), given a € I = (S) we can write a = ) r;s;7; for some
si € S,ri,rf € Rand b € J = (T) we can write b = Y ¢;t;q; for some t; € T,q;,q; € R.
Then a + b = > ris;7, + Y qitiq, gives an expression of a + b as a sum of elements of the
form z;y;x} with y; € SUT and z;, 2, € R. This shows that I +J C (SUT).

To show that (SUT) C I+ J, an element of z € SUT can be written as a sum of elements
of the form z;y;«} with y; € SUT and z;,2, € R. Collecting the indices with y; € S
into one sum a and the indices with y; € T into another sum b, we have a € (S) = I and
be(T)=J,and z=a+bel+J. O

R/I _ R
()  I+J

Let m: R — R/I be the quotient homomorphism. Show that

Proof 1. Consider the quotient homomorphism 7 : R — R/(I + J). Note that I C T+ J =
ker(7), so the UMP of quotient rings yields a homomorphism 7 : R/I — R/(I + J) given
by the rule 7(r + I) = r + I + J. Since 7 is surjective, T is as well.

We claim that ker(7) = (). Indeed,

T(r+1)=0g/qsner+Il+J=0+1+Jerecl+Jer=a+b

for some a € I,b € J, whence r +1 = (a+b)+1 = b+ 1 € w(J). Conversely, if
r+1¢emn(J), thenr+1I=>b+1I for some b € J, and then r = a + b for some a € I,b € J
and 7(r + I) = Ogr/(;4.y)- This justifies the claim.

Thus, by the First Isomorphism Theorem, R/(I + J) = (R/I)/=(J). O

Proof 2. Note that

I+J
7(J)={b+TeR/I|beJ})={at+b+IcR/I| ae],beJ}:%.
Then applying the Cancelling Isomorphism Theorem to R D I 4+ J 2 I, we get an isomor-
phism
R _ R/I _ R/I
I+J (I+0)/I =)
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() (a)

Prove that a finite integral domain must be a field.

Proof 1. Let R be a finite domain, and consider any nonzero element z € R. Since R is
finite, there are only finitely many elements of the form ™ with n > 0. In particular, there
exist n > m such that ™ = ™. Thus by the cancellation rule, we have

"M =" = 2" =1,
Note that a = n —m > 0 and 2% = 1. In particular, z is a unit, with inverse 2®~!. We
conclude that R is a field. O

Proof 2. Let R be a finite domain, and consider any nonzero element x € R. Consider the
function T : R — R given by T,(r) = xr. Note that T} is injective, since Ty (r) = Tx(s)
implies xr = xs implies r = s since R is a domain and z is nonzero. Since R is finite, T},
is then surjective. In particular, there exists y € R such that 1 = T,(y) = zy, and thus x
is a unit with inverse y. We conclude that R is a field. O

Prove! that if R is a commutative ring and P C R is a prime ideal such that P has finite
index as a subgroup of (R, +), then P is a maximal ideal.

Proof. By assumption the cardinality of R/P, which is the index [(R,+) : (P, +)], is finite.
Since P is prime, R/P is a domain. By part (a), R/P is a field. Thus P is maximal. [

'Hint: Consider the quotient ring R/P.
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(6) Consider the polynomial f(x) = 2? + z + [1]5 in Z/5[z]. Show that R = Z{;gﬁ] is a field, and

determine the number of elements of R.

Proof. We claim that f is an irreducible element of Z/5[z]. Since Z/5[x] is a field, any nontrivial
factorization of f must be as a product of polynomials of degree one, and any polynomial of
degree one over a field has a root, so it suffices to show that f has no root in Z/5. To check
this, we can just evaluate at every element of Z/5[x]: we have

FA0D) = 0], F(1) = 18], £(2) = 2], f([B) = 3], f([4]) = [1.
Now, since Z/5[z] is a PID, every irreducible element generates a maximal ideal. Thus (f) is
maximal so R = Z/5[z]/(f) is a field.

To compute the number of element of R we recall that, as a consequence of the division
algorithm, every element g + (f) € R has a unique representative r such that deg(r) < 2 or
r = 0. There are 52 = 25 such polynomials, so |R| = 25. O
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