
WORKSHEET #1.1: RINGS

EXAMPLE: The following are rings.
(1) Rings of numbers, like Z and Z[i] = {a+ bi ∈ C | a, b ∈ Z}.
(2) Given a starting ring A, the polynomial ring in one indeterminate

A[X] := {adXd + · · ·+ a1X + a0 | d ≥ 0, ai ∈ A},
or in a (finite or infinite!1) set of indeterminates A[X1, . . . , Xn], A[Xλ | λ ∈ Λ].

(3) Given a starting ring A, the power series ring in one indeterminate

AJXK :=

{∑
i≥0

aiX
i | ai ∈ A

}
,

or in a set of indeterminates AJX1, . . . , XnK.
(4) For a set X , Fun(X,R) := {all functions f : [0, 1]→ R} with pointwise + and ×.
(5) C([0, 1]) := {continuous functions f : [0, 1]→ R} with pointwise + and ×.
(6) C∞([0, 1]) := {infinitely differentiable functions f : [0, 1]→ R} with pointwise + and ×.

(÷) Quotient rings: given a starting ring A and an ideal I , R = A/I .
(×) Product rings: given rings R and S, R× S = {(r, s) | r ∈ R, s ∈ S}.

DEFINITION: An element x in a ring R is called a
• unit if x has an inverse y ∈ R (i.e., xy = 1).
• zerodivisor if there is some y 6= 0 in R such that xy = 0.
• nilpotent if there is some e ≥ 0 such that xe = 0.
• idempotent if x2 = x.

We also use the terms nonunit, nonzerodivisor, nonnilpotent, nonidempotent for the negations of
the above. We say that a ring is reduced if it has no nonzero nilpotents.

(1)(1) Warmup with units, zerodivisors, nilpotents, and idempotents.
(a)(a) What are the implications between nilpotent, nonunit, and zerodivisor?
(b)(b) What are the implications between reduced, field, and domain?
(c)(c) What two elements of a ring are always idempotents? We call an idempotent nontrivial to

mean that it is neither of these.
(d)(d) If e is an idempotent, show that e′ := 1− e is an idempotent2 and ee′ = 0.

(a)(a) nilpotent⇒ zerodivisor⇒ nonunit
(b)(b) reduced⇐ domain⇐ field
(c)(c) 0 and 1
(d)(d) e′2 = (1− e)(1− e) = 1− 2e+ e2 = 1− e = e′ and ee′ = e(1− e) = e− e2 = 0.

(2)(2) Elements in polynomial rings: Let R = A[X1, . . . , Xn] a polynomial ring over a domain A.
(a)(a) If n = 1, and f, g ∈ R = A[X], briefly explain why the top degree3 of fg equals the top

degree of f plus the top degree of g. What if A is not a domain?

1Note: Even if the index set is infinite, by definition the elements of A[Xλ | λ ∈ Λ] are finite sums of monomials (with
coefficients in A) that each involve finitely many variables.

2We call e′ the complementary idempotent to e.
3The top degree of f =

∑
aiX

i is max{k | ak 6= 0}; we say top coefficient for ak. We use the term top degree instead
of degree for reasons that will come up later.



(b)(b) Again if n = 1, briefly explain whyR = A[X] is a domain, and identify all of the units inR.
(c)(c) Now for general n, show that R is a domain, and identify all of the units in R.

(a)(a) If f = amXm + lower terms and g = bnXn + lower terms , then fg =
∑
ambnX

m+n +
lower terms. If A is a domain, then am, bn 6= 0 implies ambn 6= 0, but if A is not a
domain, the top degree may drop.

(b)(b) By looking at the top degree terms as above, we see that the product of nonzero poly-
nomials is nonzero. The units in R are just the units in A viewed as polynomials with
no higher degree terms. Indeed, such elements are definitely units; on the other hand, if
fg = 1 in R, then the top degree of f and g are both zero, so f and g are constant, which
means f and g are in A, so a unit in R is a unit in A.

(c) The claim that R is a domain follows by induction on n, since A[X1, . . . , Xn] =
A[X1, . . . , Xn−1][Xn]. The units in R are again the units in A. This also follows
by induction on n: a unit in A[X1, . . . , Xn] = A[X1, . . . , Xn−1][Xn] is a unit in
A[X1, . . . , Xn−1], which by the induction hypothesis is constant.

(3)(3) Elements in power series rings: Let A be a ring.
(a)(a) Explain why the set of formal sums {

∑
i∈Z aiXi | ai ∈ A} with arbitrary positive and

negative exponents is not clearly a ring in the same way as AJXK.
(b)(b) Given series f, g ∈ AJXK, how much of f, g do you need to know to compute the X3-

coefficient of f + g? What about the X3-coefficient of fg?
(c)(c) Find the first three coefficients for the inverse4 of f = 1 + 3X + 7X2 + · · · in RJXK.
(d)(d) Does “top degree” make sense in AJXK? What about “bottom degree”?
(e)(e) Explain why5 for a domain A, the power series ring AJX1, . . . , XnK is also a domain.
(f)(f) Show6 that f ∈ AJX1, . . . , XnK is a unit if and only if the constant term of f is a unit.

(a)(a) To multiply two such formal sums, you would have to take an infinite sum in A to
compute the coefficient of any X i.

(b)(b) To compute the X3-coefficient of f + g, you just need to know the X3-coefficients of
f and g. To compute the X3-coefficient of fg, you need to know the 1, X,X2, X3

coefficients of f and g.
(c)(c) g = 1− 3X − 2X2 + · · · .
(d)(d) No; yes.
(e)(e) For n = 1, look at the bottom degree terms. The bottom degree term of the product is

the product of the bottom degree terms; if A is a domain, this product is nonzero. The
statement just follows by induction on n.

(f)(f) If f is a unit, then the constant term is a unit, since the constant term of fg is the constant
term of f times that of g.
For the other direction, first, take n = 1. Given f =

∑
i aiX

i, construct g =∑
i biX

i by defining bm recursively b0 = 1/a0 and that the Xm-coefficient of
(
∑m

i=0 aiX
i)(

∑m
i=0 biXi) is 0 for m > 0: we can do this since, given b0, . . . , bm that

work in the mth step, in the next step we can the formula for the Xm+1 coefficient is
a0bm+1+a1bm+· · ·+am+1b0, since a0 is a unit, we can solve for bm+1 to make this equal

4It doesn’t matter what the · · · are!
5You might want to start with the case n = 1.
6Hint: For n = 1, given f =

∑
i aiX

i, construct g =
∑
i biX

i by defining bm recursively b0 = 1/a0 and that the
Xm-coefficient of (

∑m
i=0 aiX

i)(
∑m
i=0 biXi) is 0 for m > 0.



zero without changing the lower coefficients. Continuing this way, take g =
∑

i biX
i.

Then for any k, the Xk-coefficient only depends on the a0, . . . , ak and b0, . . . , bk coeffi-
cients, and by construction, this coefficient is zero for k ≥ 1. Thus, any such f has an
inverse.
The general claim follows by induction on n: if f ∈ AJX1, . . . , XnK has a unit con-
stant term considered as a power series in AJX1, . . . , XnK, then its constant term in
(AJX1, . . . , Xn−1K)JXnK has a unit constant term, hence is a unit in AJX1, . . . , Xn−1K,
so f is a unit in (AJX1, . . . , Xn−1K)JXnK = AJX1, . . . , XnK.

(4) Elements in function rings.
(a) For R = Fun([0, 1],R),

(i) What are the nilpotents in R?
(ii) What are the units in R?

(iii) What are the idempotents in R?
(iv) What are the zerodivisors in R?

(b) ForR = C([0, 1],R),R = C∞([0, 1],R) same questions as above. When are there any/none?

(a) For R = Fun([0, 1],R),
(i) There are no nilpotents, since for any α ∈ [0, 1], f(α)n = 0 means that f(α) = 0.

(ii) The units are the functions that are never zero, since the function g(x) = 1/f(x)
is then defined (and conversely).

(iii) f(x) is idempotent if f(α) ∈ {0, 1} for all α ∈ [0, 1].
(iv) Any function that is zero at some point is a zerodivisor: if S = {α ∈

[0, 1] | f(α) = 0} is nonempty, then let g be a nonzero function that vanishes
on [0, 1] r S, then fg = 0.

(b) For R = C([0, 1]) or R = C∞([0, 1]),
(i) Same

(ii) Same
(iii) There are no nontrivial idempotents: the same condition as above applies, but by

continuity, f must either be identically 0 or identically 1.
(iv) The difference is that now there may not be a nonzero function that vanishes on

[0, 1]rS, e.g., if f vanishes at a single point. To be a zerodivisor, the set [0, 1]rS
as above must be not be dense.

(5)(5) Product rings and idempotents.
(a)(a) Let R and S be rings, and T = R × S. Show that (1, 0) and (0, 1) are nontrivial comple-

mentary idempotents in T .
(b)(b) Let T be a ring, and e ∈ T a nontrivial idempotent, with e′ = 1 − e. Explain why

Te = {te | t ∈ T} and Te′ are rings with the same addition and multiplication as T . Why
didn’t I say “subring”?

(c)(c) Let T be a ring, and e ∈ T a nontrivial idempotent, with e′ = 1−e. Show that T ∼= Te×Te′.
Conclude that R has nontrivial idempotents if and only if R decomposes as a product.

(a)(a) (1, 0)2 = (1, 0), (0, 1)2 = (0, 1), and (1, 0) + (0, 1) = (1, 1) is the “1” of R× S.
(b)(b) re+ se = (r + s)e and (re)(se) = rse2 = rse. Same with e′.
(c)(c) Define φ : T → Te × Te′ by φ(t) = (te, te′). The verification that this is a ring

homomorphism essentially the content of (b). If φ(t) = (0, 0), then te = 0 and 0 =
te′ = t(1 − e) = t − te, so t = 0, hence φ is injective. Given (re, se′) ∈ Te × Te′, we
have φ(re+ se′) = ((re+ se′)e, (re+ se′)e′) = (re, se′), hence φ is surjective, as well.



(6) Elements in quotient rings:
(a) Let K be a field, and R = K[X, Y ]/(X2, XY ). Find

• a nonzero nilpotent in R
• a zerodivisor in R that is not a nilpotent
• a unit in R that is not equivalent to a constant polynomial

(b) Find n ∈ Z such that
• [4] ∈ Z/(n) is a unit
• [4] ∈ Z/(n) is a nonzero nilpotent

• [4] ∈ Z/(n) is a nonnilp. zerodivisor
• [4] ∈ Z/(n) is a nontrivial idempotent

This solution is embargoed.

(7) More about elements.
(a) Prove that a nilpotent plus a unit is always a unit.
(b) LetA be an arbitrary ring, andR = A[X]. Characterize, in terms of their coefficients, which

elements of R are units, and which elements are nilpotents.
(c) Let A be an arbitrary ring, and R = AJXK. Characterize, in terms of their coefficients,

which elements of R are nilpotents.



§1.2: IDEALS

DEFINITION: Let S be a subset of a ring R. The ideal generated by S, denoted (S), is the smallest ideal
containing S. Equivalently,

(S) =
{∑

risi | ri ∈ R, si ∈ S
}

is the set of R-linear combinations1 of elements of S.

We say that S generates an ideal I if (S) = I .

DEFINITION: Let I, J be ideals of a ring R. The following are ideals:
• IJ := (ab | a ∈ I, b ∈ J).
• In := I · I · · · I︸ ︷︷ ︸

n times

= (a1 · · · an | ai ∈ I) for n ≥ 1.

• I + J := {a+ b | a ∈ I, b ∈ J} = (I ∪ J).
• rI := (r)I = {ra | a ∈ I} for r ∈ R.
• I : J := {r ∈ R | rJ ⊆ I}.

DEFINITION: Let I be an ideal in a ring R. The radical of I is
√
I := {f ∈ R | fn ∈ I for some n ≥ 1}.

An ideal I is radical if I =
√
I .

DIVISION ALGORITHM: Let A be a ring, and R = A[X] be a polynomial ring. Let g ∈ R be a monic
polynomial; i.e., the leading coefficient of f is a unit. Then for any f ∈ R, there exist unique polynomials
q, r ∈ R such that f = gq + r and the top degree of r is less than the top degree of g.

(1)(1) Briefly discuss why the two characterizations of (S) in Definition 2.1 are equal.

The set of linear combinations of elements of S is an ideal:
• 0 = 0s1 (we also consider 0 to be the empty combination);
• given two linear combinations, by including zero coefficients, we can assume our combina-

tions involve the same elements of S, and then
∑

i aisi +
∑

i bisi =
∑

i(ai + bi)si;
• r(

∑
i aisi) =

∑
i raisi.

Any ideal that contains S must contain all of the linear combinations of S, using the definition of
ideal. These two facts mean that the set of linear combinations is the smallest ideal containing S.

(2)(2) Finding generating sets for ideals: Let S be a subset of a ring R, and I an ideal.
(a)(a) To show that (S) = I , which containment do you think is easier to verify? How would you check?
(b)(b) To show that (S) = I given (S) ⊆ I , explain why it suffices to show that I/(S) = 0 in R/(S);

i.e., that every element of I is equivalent to 0 modulo S.
(c)(c) Let K be a field, R = K[U, V,W ] and S = K[X, Y ] be polynomial rings. Let φ : R→ S be the

ring homomorphism that is constant on K, and maps U 7→ X2, V 7→ XY,W 7→ Y 2. Show that
the kernel φ is generated by V 2 − UW as follows:
• Show that (V 2 − UW ) ⊆ ker(φ).
• Think of R as K[U,W ][V ]. Given F ∈ ker(φ), use the Division Algorithm to show that
F ≡ F1V + F0 modulo (V 2−UW ) for some F1, F0 ∈ K[U,W ] with F1V +F0 ∈ ker(φ).
• Use φ(F1V + F0) = 0 to show that F1 = F0 = 0, and conclude that F ∈ ker(φ).

(a)(a) Showing (S) ⊆ I is the easier containment: it suffices to show that S ⊆ I .
(b)(b) This follows from the Second Isomorphism Theorem.

1Linear combinations always means finite linear combinations: the axioms of a ring can only make sense of finite sums.



(c)(c) • We check φ(V 2 −UW ) = (XY )2 −X2Y 2 = 0, so V 2 −UW ∈ ker(φ). This implies
(V 2 − UW ) ⊆ ker(φ).
• By Division, we have F = (V 2−UW )Q+R, with the top degree (in V ) of R at most
1. Then F ≡ R = F1V + F0 modulo (V 2 − UW ). Since F, V 2 − UW ∈ ker(φ), we
must have F1V + F0 ∈ ker(φ).
• We have 0 = φ(F1V + F0) = F1(X

2, Y 2)XY + F0(X
2, Y 2). The F1(X

2, Y 2)XY
terms only have monomials whose X-degree is odd, and the F0(X

2, Y 2) terms only
have monomials whose X-degree is even, so none can cancel with each other. This
means that F1(X

2, Y 2) = 0 and F0(X
2, Y 2) = 0, so F1(U,W ) = F0(U,W ) = 0.

Thus, F ≡ 0 modulo (V 2 − UW ), and as above, we conclude ker(φ) = (V 2 − UW ).

(3)(3) Radical ideals:
(a)(a) Fill in the blanks and convince yourself:

• R/I is a field ⇐⇒ I is
• R/I is a domain ⇐⇒ I is
• R/I is reduced ⇐⇒ I is

(b)(b) Show that the radical of an ideal is an ideal.
(c)(c) Show that a prime ideal is radical.
(d)(d) Let K be a field and R = K[X, Y, Z]. Find a generating set2 for

√
(X2, XY Z, Y 2).

(a)(a)
• R/I is a field ⇐⇒ I is maximal
• R/I is a domain ⇐⇒ I is prime
• R/I is reduced ⇐⇒ I is radical

(b)(b) Let f, g ∈
√
I . Then there are m,n ≥ 1 such that fm, gn ∈ I . Then

(f + g)m+n−1 =
∑

i+j=m+n−1

(
m+ n− 1

i, j

)
f igj,

and for each term in the sum either i ≥ m or j ≥ n, so each term is in I , hence the whole
sum is in I . Now let r ∈ R. Then (rf)m = rmfm ∈ I .

(c)(c) Suppose I is prime. If x ∈
√
I , then xn ∈ I for some n. Then, by the definition of prime,

x ∈ I . Thus,
√
I = I .

(d)(d) Since X2 and Y 2 are in (X2, XY Z, Y 2), we have X, Y ∈
√

(X2, XY Z, Y 2) by defini-
tion, so (X, Y ) ⊆

√
(X2, XY Z, Y 2). For the other containment, if F (X, Y, Z) /∈ (X, Y ),

consider F as a polynomial in X, Y with coefficients in K[Z]; the condition means that
the top degree of F is zero, and hence the top degree of F n is zero for all n, so F /∈√

(X2, XY Z, Y 2).

(4)(4) Evaluation ideals in polynomial rings: Let K be a field and R = K[X1, . . . , Xn] be a polynomial
ring. Let α = (α1, . . . , αn) ∈ Kn.
(a)(a) Let evα : R → K be the map of evaluation at α: evα(f) = f(α1, . . . , αn), or f(α) for short.

Show that mα := ker evα is a maximal ideal and R/mα
∼= K.

(b)(b) Apply division repeatedly to show that mα = (X1 − α1, . . . , Xn − αn).
(c)(c) For K = R and n = 1, find a maximal ideal that is not of this form. Same question with n = 2.
(d)(d) With K arbitrary again, show that every maximal ideal m of R for which R/m ∼= K is of the

form mα for some α ∈ Kn. Note: this is not a theorem with a fancy German name.

2Hint: To show your set generates, you might consider the bottom degree of F considered as a polynomial in X and Y .



(a)(a) The evaluation map is surjective, since for any k ∈ K, the constant function k maps to k. By
the First Isomorphism Theorem, R/mα

∼= K, so mα is maximal.
(b)(b) We have evα(Xi−αi) = αi−αi = 0, so (X1−α1, . . . , Xn−αn) ⊆ mα. Given some F ∈ mα,

consider F as a polynomial in X1 and apply division by X1 − α1, to get F ≡ F1 modulo
(X1−α1, . . . , Xn−αn), for some F1 not involvingX1. Continue withX2−α2, . . . to get the F
is equivalent to a constant, which must be zero. This shows that F ∈ (X1−α1, . . . , Xn−αn),
so mα = (X1 − α1, . . . , Xn − αn).

(c)(c) (X2 + 1); (X2 + 1, Y ).
(d)(d) Let φ : R → R/m ∼= K be quotient map followed by the given isomorphism. Set αi :=

φ(Xi). Then Xi − αi ∈ ker(φ), so mα = (X1 − α1, . . . , Xn − αn) ⊆ ker(φ). Since mα is
maximal, we must have equality.

(5) Lots of generators:
(a) Let K be a field and R = K[X1, X2, . . . ] be a polynomial ring in countably many variables.

Explain3 why the ideal m = (X1, X2, . . . ) cannot be generated by a finite set.
(b) Show that the ideal (Xn, Xn−1Y, . . . , XY n−1, Y n) ⊆ K[X, Y ] cannot be generated by fewer

than n+ 1 generators.
(c) Let R = C([0, 1],R) and α ∈ (0, 1). Show that for any element g ∈ (f1, . . . , fn) ⊆ mα, there is

some ε > 0 and some C > 0 such that |g| < Cmaxi{|fi|} on (α − ε, α + ε). Use this to show
that mα cannot be generated by a finite set.

(a) Suppose m = (f1, . . . , fm). Since each polynomial involves only finitely many variables,
only finitely many variables occur in {f1, . . . , fm}, and since each fi has no constant term,
these polynomials are linear combinations of those variablesX1, . . . , Xn; i.e., (f1, . . . , fm) ⊆
(X1, . . . , Xn). It suffices to show that m 6= (X1, . . . , Xn). To see it, take Xn+1 and note that
Xn+1 =

∑n
i=1 giXi is impossible, since the monomial Xn+1 can’t occur in any summand of

the right hand side.
(b) Note that this ideal is the set of all polynomial whose bottom degree is at least n. Given a

generating set f1, . . . , fm for I , consider the degree n terms of the polynomials fi. We claim
that the degree n terms of f1, . . . , fm must span the space of degree n polynomials as a vector
space. Indeed, given h of degree n, we have h ∈ I , so h =

∑
i gifi. But every term of fi has

degree at least n, so the only things of degree n on the right hand side come from the degree
n piece of fi and the degree zero piece of gi. This shows the claim. Then the statement is
clear, since the degree n terms form an n+ 1 dimensional vector space.

(c) Let g =
∑
gifi ∈ (f1, . . . , fn). By continuity, there is some ε > 0 and some C > 0 such

that |gi| < C/n on (α− ε, α+ ε), so |g| < |
∑

i gifi| ≤
∑

i |gi||fi| ≤
∑

iC/nmaxi{|fi|} ≤
Cmaxi{|fi|} on (α− ε, α+ ε).
Now, given f1, . . . , fn ∈ mα, let g =

√
maxi{|fi|}. Then g is continuous and g(α) = 0, so

g ∈ mα, but g/maxi{|fi|} = 1/g → ∞ as x → α, so there is no constant C > 0 and no
interval (α− ε, α+ ε) on which |g| < Cmaxi{|fi|}. Thus, mα is not finitely generated.

(6) Evaluation ideals in function rings: Let R = C([0, 1],R). Let α ∈ [0, 1].
(a) Let evα : C([0, 1])→ R be the map of evaluation at α: evα(f) = f(α). Show that mα := evα is

a maximal ideal and R/mα
∼= R.

(b) Show that (x− α) ⊆ mα.

3Hint: You might find it convenient to show that (f1, . . . , fm) ⊆ (X1, . . . , Xn) for some n, and then show that (X1, . . . , Xn) $ m



(c) Show that every maximal ideal R is of the form mα for some α ∈ [0, 1]. You may want to argue
by contradiction: if not, there is an ideal I such that the sets Uf := {x ∈ [0, 1] | f(x) 6= 0} for
f ∈ I form an open cover of [0, 1]. Take a finite subcover Uf1 , . . . , Uft and consider f 2

1 +· · ·+f 2
t .

(a) evα : C([0, 1]) → R is a surjective ring homomorphism, since evα(r) = r for any r ∈ R.
Thus, by the First Isomorphism Theorem, R/mα

∼= R, and hence mα is a maximal ideal.
(b) It suffices to note that evα(x− α) = 0.
(c) Argue by contradiction: if not, there is a proper ideal I that is not contained in some mα; this

means that for every α, some element of I does not vanish at α. Since for any continuous
f , the set Uf := {x ∈ [0, 1] | f(x) 6= 0} is open, the collection {Uf | f ∈ I} is an open
cover of [0, 1]. Since [0, 1] is compact, there is a finite subcover Uf1 , . . . , Uft . For these fi’s
consider h = f 2

1 + · · · + f 2
t . Each f 2

i is nonnegative, and for any α, one of these is strictly
positive at α. This means that h(x) 6= 0 for all x ∈ [0, 1], so h is a unit, and hence I = R, a
contradiction.

(7) Division Algorithm.
(a) What fails in the Division Algorithm when g is not monic? Uniqueness? Existence? Both?
(b) Review the proof of the Division Algorithm.

(8) Let K be a field and R = KJX1, . . . , XnK be a power series ring in n indeterminates. Let
R′ = KJX1, . . . , Xn−1K, so we can also think of R = R′JXnK. In this problem we will prove the
useful analogue of division in power series rings:

WEIERSTRASS DIVISION THEOREM: Let r ∈ R, and write g =
∑

i≥0 aiX
i
n with ai ∈ R′. For some

d ≥ 0, suppose that ad ∈ R′ is a unit, and that ai ∈ R′ is not a unit for all i < d. Then, for any f ∈ R,
there exist unique q ∈ R and r ∈ R′[Xn] such that f = gq+ r and the top degree of r as a polynomial
in Xn is less than d.

(a) Show the theorem in the very special case g = Xd
n.

(b) Show the theorem in the special case ai = 0 for all i < d.
(c) Show the uniqueness part of the theorem.4

(d) Show the existence part of the theorem.5

(a) Given f , write f =
∑

i≥0 biX
i
n with bi ∈ R′. For existence, just take r =

∑d−1
i=0 biX

i
n and

q =
∑∞

i=d biX
i−d
n . For uniqueness, note that if f = gq+ r = gq′+ r′ with the top degree of r

and r′ as polynomials in Xn are less than d. Then 0 = g(q− q′)+ (r− r′), so the uniqueness
claim reduces to the case f = 0; we will use this in the other parts without comment. Every
term of r has Xn-degree less than d, whereas every term of qg has Xn-degree at least d, so
no terms can cancel. Thus qg + r = 0 implies q = r = 0 (here and henceforth, we assume r
is as in the statement when we write qg + r).

(b) If ai = 0 for i < d, then g = Xd
nu where u =

∑
i≥0 ai−dX

i
n. Since the constant coefficient

of u is ad, which is a unit in R′, u is a unit in R. Thus, we can apply (a) to f and Xd
n to get

4Hint: For an element of R′ or of R, write ord′ for the order in the X1, . . . , Xn−1 variables; that is, the lowest total X1, . . . , Xn−1-
degree of a nonzero term (not counting Xn in the degree). If qg + r = 0, write q =

∑
i biX

i
n. You might find it convenient to

pick i such that ord′(bi) is minimal, and in case of a tie, choose the smallest such i among these.
5Hint: Write g− =

∑t−1
i=0 aiX

i
n and g+ =

∑∞
i=t aiX

i
n. Apply (b) with g+ instead of g, to get some q0, r0; write f1 = f−(q0g+r0),

and keep repeating to get a sequence of qi’s and ri’s. Show that ord′(qi), ord′(ri) ≥ i, and use this to make sense of q =
∑

i qi
and r =

∑
i ri.



f = q0X
d
n + r0 = (q0u

−1)g + r0; thus, q = q0u
−1 and r = r0 satisfy the existence clause of

the theorem. For uniqueness, if f = q′g+ r′, then f = q′uXd
n+ r′, so by the uniqueness part

of (a), we must have q′u = q0 and r′ = r0, and thus q′ = q and r′ = r.
(c) For an element of R′ or of R, write ord′ for the order in the X1, . . . , Xn−1 variables; that

is, the lowest total X1, . . . , Xn−1-degree of a nonzero term (not counting Xn in the degree).
Suppose that qg + r = 0, and write q =

∑
i biX

i
n. Suppose that q is nonzero, so bi 6= 0 for

some i. Pick i such that ord′(bi) ≤ ord′(bj) for all j with bj 6= 0, and ord′(bi) = ord′(bj)
implies i < j; we can do this by well ordering of N. Say ord′(bi) = t. Consider the
coefficient of Xd+i

n in 0 = qg + r. Byt he degree constraint on r, this is the same as the
coefficient of Xd+i

n in qg. Multiplying out, this is
∑d+i

j=0 ad+i−jbj . For j = i, the order of
adbi is t. For j < i, we have ord′(ad+i−jbj) ≥ ord′(bj) > t by choice of i. For j > i, since
ord′(ad+i−j) > 0 and ord’(bj) ≥ t, we have ord′(ad+i−jbj) > t. Thus, the no term can cancel
the adbi term, so qg + r 6= 0. On the other hand, if q = 0 and r 6= 0, clearly qg + r 6= 0. It
follows there there are unique q, r such that qg + r = 0.

(d) First, we observe that in the context of (b), if ord′(f) = t, then ord′(q), ord′(r) ≥ t. This is
clear in the setting of (a), and following the proof of (b), we just need to observe that if u is
a unit in R, then ord′(q0u

−1) ≥ ord′(q0), which is clear since any coefficient of the product
q0u
−1 is a sum of multiples of the coefficients of q0.

Now we begin the main proof. Write g− =
∑t−1

i=0 aiX
i
n and g+ =

∑∞
i=t aiX

i
n. Apply (b)

with g+ to write f = q0g+ + r0, and set f1 = f − (q0g + r0) = −q0g−. Repeat with f1
to write f1 = q1g+ + r1, and f2 = f1 − (q1g + r1) = −q1g−. Continue like so to obtain
a sequence of series q0, q1, . . . and r0, r1, . . . . From the observation above, we have that
ord′(qi), ord

′(ri) ≥ ord′(fi) ≥ ord′(qi1) + 1, since the constant term of each coefficient of
g− vanishes. It follows that ord′(qi), ord′(ri) ≥ i for each i.
For a series h, write [h]i for the degree i part of h, and [h]≤i for the sum of all parts of degree
≤ i. Define q to be the series such that [q]i =

∑i
j=0[qj]i, and likewise with r. Note that

r is a still a polynomial in Xn of top degree less than d. We claim that f = qg + r. To
show this, it suffices to show that [f ]i = [qg + r]i. Note that to compute [qg + r]i, we can
replace q, g, r by [q]≤i, and similarly for the others. But [q]≤i = [

∑i
j=0 qj]≤i (and likewise

with r), so [qg + r]i = [(
∑i

j=0 qj)g + (
∑i

j=0 rj)]i. Then, by construction of the sequences
{qi}, {ri}, {fi}, we have [f − (qg + r)]i = [fi+1]i and since ord′(fi+1) ≥ i + 1, we have
[fi+1]i = 0. It follows that f − (qg + r) = 0; i.e., f = qg + r.



§1.3: ALGEBRAS

DEFINITION: Let A be a ring. An A-algebra is a ring R equipped with a ring homomorphism
φ : A→ R; we call φ the structure morphism of the algebra1. A homomorphism of A-algebras
is a ring homomorphism that is compatible with the structure morphisms; i.e., if φ : A → R and
ψ : A→ S are A-algebras, then α : R→ S is an A-algebra homomorphism if α ◦ φ = ψ.

UNIVERSAL PROPERTY OF POLYNOMIAL RINGS: Let2 A be a ring, and T = A[X1, . . . , Xn] be a
polynomial ring. For any A-algebra R, and any collection of elements r1, . . . , rn ∈ R, there is a
unique A-algebra homomorphism α : T → R such that α(Xi) = ri.

DEFINITION: Let A be a ring, and R be an A-algebra. Let S be a subset of R. The subalgebra
generated by S, denoted A[S], is the smallest A-subalgebra of R containing S. Equivalently3,

A[r1, . . . , rn] =

{∑
finite

ard11 · · · rdnn | a ∈ φ(A)

}
.

DEFINITION: Let R be an A-algebra. Let r1, . . . , rn ∈ R. The ideal of A-algebraic relations on
r1, . . . , rn is the set of polynomials f(X1, . . . , Xn) ∈ A[X1, . . . , Xn] such that f(r1, . . . , rn) = 0 in
R. Equivalently, the ideal of A-algebraic relations on r1, . . . , rn is the kernel of the homomorphism
α : A[X1, . . . , Xn]→ R given by α(Xi) = ri. We say that a set of elements in an A-algebra is
algebraically independent over A if it has no nonzero A-algebraic relations.

DEFINITION: A presentation of an A-algebra R consists of a set of generators r1, . . . , rn of R as an
A-algebra and a set of generators f1, . . . , fm ∈ A[X1, . . . , Xn] for the ideal of A-algebraic relations
on r1, . . . , rn. We call f1, . . . , fm a set of defining relations for R as an A-algebra.

PROPOSITION: If R is an A-algebra, and f1, . . . , fm is a set of defining relations for R as an
A-algebra, then R ∼= A[X1, . . . , Xn]/(f1, . . . , fm).

(1)(1) Let R be an A-algebra and r1, . . . , rn ∈ R.
(a)(a) Discuss why the equivalent characterizations in the definition ofA[r1, . . . , rn] are equivalent.
(b)(b) Explain whyA[r1, . . . , rn] is the image of theA-algebra homomorphism α : A[X1, . . . , Xn]→ R

such that α(Xi) = ri.
(c)(c) Suppose that R = A[r1, . . . , rn] and let f1, . . . , fm be a set of generators for the kernel of

the map α. Explain why R ∼= A[X1, . . . , Xn]/(f1, . . . , fm), i.e., why the Proposition above
is true.

(d)(d) Suppose that R is generated as an A-algebra by a set S. Let I be an ideal of R. Explain why
R/I is generated as an A-algebra by the image of S in R/I .

(e)(e) Let R = A[X1, . . . , Xn]/(f1, . . . , fm), where A[X1, . . . , Xn] is a polynomial ring over A.
Find a presentation for R.

1Note: the same R with different φ’s yield different A-algebras. Despite this we often say “Let R be an A-algebra” without
naming the structure morphism.

2This is equally valid for polynomial rings in infinitely many variables T = A[Xλ | λ ∈ Λ] with a tuple of elements of
{rλ}λ∈Λ in R in bijection with the variable set. I just wrote this with finitely many variables to keep the notation for getting
too overwhelming.

3Again written with a finite set just for convenience.



(a)(a) Clearly im(α) ⊆ R is an A-subalgebra that contains r1, . . . , rn, so A[r1, . . . , rn] ⊆
im(α). On the other hand, since r1, . . . , rn ∈ A[r1, . . . , rn], we have α(Xi) ∈
A[r1, . . . , rn], so we can consider α as an A-algebra homomorphism from
A[X1, . . . , Xn]→ A[r1, . . . , rn], and hence im(α) ⊆ A[r1, . . . , rn].

(b)(b) This is just another way of thinking about im(α): α(
∑
aiX

i1
1 · · ·X in

n ) =∑
φ(ai)r

i1
1 · · · rinn .

(c)(c) This is just the First Isomorphism Theorem applied along with (a).
(d)(d) If K[{Xλ}] → R where the variables map to the elements of S is surjective, then com-

posing with the quotient map gives a surjection K[{Xλ}] → R → R/I where the
variables map to the images of elements of S.

(e)(e) R is generated by [X1], . . . , [Xn], with defining relations f1, . . . , fm.

(2)(2) Presentations of some subrings:
(a)(a) Consider the Z-subalgebra of C generated by

√
2. Write the notation for this ring. Is there a

more compact description of the set of elements in this ring? Find a presentation.
(b)(b) Same as (a) with 3

√
2 instead of

√
2.

(c)(c) Let K be a field, and T = K[X, Y ]. Come up with a concrete description of the ring
R = K[X2, XY, Y 2] ⊆ T , (i.e., describe in simple terms which polynomials are elements
of R), and give a presentation as a K-algebra.

(a)(a) Z[
√
2] = {a+ b

√
2 | a, b ∈ Z} ∼= Z[X]/(X2 − 2)

(b)(b) Z[ 3
√
2] = {a+ b 3

√
2 + c 3

√
4 | a, b, c ∈ Z} ∼= Z[X]/(X3 − 2).

(c)(c) K[X2, XY, Y 2] is the collection of polynomials that only have even degree terms. We
computed the kernel of the presenting map last time, in slightly different words and
letters, and saw that the kernel is generated by X2

2 −X1X3.

(3)(3) Infinitely generated algebras:
(a)(a) Show that Q = Z[1/p | p is a prime number].
(b)(b) True or false: It is a direct consequence of the conclusion of (a) and the fact that there are

infinitely many primes that Q is not a finitely generated Z-algebra.
(c)(c) Given p1, . . . , pm prime numbers, describe the elements of Z[1/p1, . . . , 1/pm] in terms of

their prime factorizations. Can you ever have Z[1/p1, . . . , 1/pm] = Q for a finite set of
primes?

(d)(d) Show that Q is not a finitely generated Z-algebra.
(e) Show that, for a field K, the algebra K[X,XY,XY 2, XY 3, . . . ] ⊆ K[X, Y ] is not a finitely

generated K-algebra.
(f) Show that, for a field K, the algebra K[X, Y/X, Y/X2, Y/X3, . . . ] ⊆ K(X, Y ) is not a

finitely generated K-algebra.

(a)(a) The ⊇ containment is clear. For the other, take a/b ∈ Q, and write b = pe11 · · · , penn .
Then a/b = a(1/p1)

e1 · · · (1/pn)en exhibits a/b in the right hand side.
(b)(b) False! There could be a different finite generating set.
(c)(c) An element of Z[1/p1, . . . , 1/pm] can be written as

∑
α aα(1/p1)

α1 · · · (1/pm)αm so
has a denominator that is a product of powers of pi’s. This can never equal Q, since
1/(p1 · · · pm+1) can’t be written in this form: if so, and in lowest terms with numerator



a, after clearing denominators we would have pα1
1 · · · pαn

n = (p1 · · · pm + 1)a, which
contradicts the expression in lowest terms.

(d)(d) If Q = Z[a1/b1, . . . , an/bn] (in lowest terms) let p1, . . . , pm be the prime factors of
b1, . . . , bn. Then Z[a1/b1, . . . , an/bn] ⊆ Z[1/p1, . . . , 1/pm], so Z[1/p1, . . . , 1/pm] = Q
contradicting what we just showed.

(e) Suppose otherwise that K[X,XY,XY 2, XY 3, . . . ] = K[f1, . . . , fn]. Since each fi
is a polynomial expression of X,XY,XY 2, XY 3, . . . , and there are finitely many
XY j that appear in (fixed expressions for) each of the finitely many fi, we have
K[X,XY,XY 2, XY 3, . . . ] ⊆ K[f1, . . . , fn] ⊆ K[X,XY, . . . , XY m] for some m,
and equality holds for this same m. We claim that XY m+1 /∈ K[X,XY, . . . , XY m],
which will yield the desired contradiction. Indeed, one can see that every monomial in
K[X,XY, . . . , XY m] has its y-exponent is less than or equal to m times its x-exponent,
which is not true of XY m+1. This is the desired contradiction.

(f) Similar to the previous.

(4) More algebras:
(a) Give two different nonisomorphic C[X]-algebra structures on C.
(b) Find a C-algebra generating set for the ring of polynomials in C[X, Y ] that only have terms

whose total degree (X-exponent plus Y -exponent) is a multiple of three (e.g.,X3+πX5Y +5
is in while X3 + πX4Y + 5 is out).

(c) Find a C-algebra presentation for C× C.

(a) We can write C ∼= C[X]/(X) or C ∼= C[X]/(X − 1), for example. These are not
isomorphic as C[X]-algebras, since such a morphism would send [0] to [0] and [X] to
[X], but [X] = [0] in C[X]/(X) while [X] = [1] in C[X]/(X − 1).

(b) The set X3, X2Y,XY 2, Y 3 works. We can write any polynomial in this ring as a sum
of monomials of total degree three. From such a monomial, we can factor out powers
of X3 and Y 3 until we get either a constant or X2Y , or XY 2. Then putting everything
back together, we get that any polynomial in our ring is a polynomial expression in the
four things we named.

(c) We need a generator for (1, 0); then (0, 1) comes for free as 1 − (1, 0), and we’re set
on generators. Let’s map X to (1, 0) for our presentation. Then X(1 − X) maps to
(1, 0)(0, 1) = 0 so this is in the kernel; one can show with a division argument along the
lines of many we’ve discussed that this generates the kernel.

(5) Let K be a field. Describe which elements are in the K-algebra K[X,X−1] ⊆ K(X), and
find an element of K(X) not in K[X,X−1]. Then compute4 a presentation for K[X,X−1] as a
K-algebra.

The elements of K[X,X−1] are rational functions that can be written with a power of X as a
denominator. The rational function 1/(X − 1) is not in this algebra.

We claim that K[X,X−1] ∼= K[X1, X2]/(X1X2−1). Clearly X1X2−1 is a relation on X
and X−1. If it does not generate, take a relation not in the ideal among which has lowest X2-
degree. Let f(X1, X2) = fn(X1)X

n
2 +fn−1(X1)X

n−1
2 +· · ·+f0(X1) be an algebraic relation,

4Hint: Note that Division does not apply. SayX1 7→ X andX2 7→ Y . Show that the topX2-degree coefficient of an algebraic
relation is a multiple of X1, and use this to set an induction on the top X2-degree.



and consider the topX2-degree coefficient fn(X1) of f . Note that fn is a multiple ofX1 since,
mapping X1 7→ X and X2 7→ X−1, we get fn(X)X−n+fn−1(X)X−n+1 + · · ·+f0(X) = 0,
so fn(X) = X(−fn−1(X)−Xfn−2(X)− · · · −Xnf0(X)). Write fn = X1f

′
n. Then

f(X1, X2) = fn(X1)X
n
2 + fn−1(X1)X

n−1
2 + · · ·+ f0(X1)

= X1f
′
n(X1)X

n
2 + fn−1(X1)X

n−1
2 + · · ·+ f0(X1)

= (X1X2 − 1)f ′n(X1)X
n−1
2 + (f ′n(X1) + fn−1)X

n−1
2 + · · ·+ f0(X1).

Subtracting off a multiple ofX1X2−1, we obtain a relation of lowerX2-degree, contradicting
the choice of our relation, and hence the existence of a relation that is not a multiple of
X1X2 − 1.

(6) Can you guess defining relations for the ring in (4b)? Can you prove your guess?

Since X3, X2Y,XY 2, Y 3 ∈ R, we have K[X3, X2Y,XY 2, Y 3] ⊆ R. To show equality,
note that we can write f ∈ R as a sum of monomials of degree a multiple of three, so it
suffices to show that any such monomial is in the algebra generated by X3, X2Y,XY 2, Y 3.
GivenX iY j , if i ≥ 3 or j ≥ 3, we can writeX iY j = X3µ or Y 3µwith µ a smaller monomial
of degree a multiple of three. Continuing like so, we can assume i, j < 3, in which case we
must have X2Y or XY 2. Thus, K[X3, X2Y,XY 2, Y 3] = R.

Now we compute the ideal of relations. We can check directly that each relation is in
the defining ideal. To see that they generate, we show that any polynomial in the kernel
of the presenting map is equivalent to zero modulo the ideal generated by the given three.
Write T = X1, U = X2, V = X3,W = Y 3. Given a relation F , we think of it as a
polynomial in V . We can use division via V 2 − UW to get rid of the V ≥2 terms, and the
other relations to rewrite the coefficient of the V 1 term as a polynomial in W alone, so
F ≡ f1(W )V + f0(T, U,W ). Then we have f1(Y

3)XY 2 + f0(X
3, X2Y, Y 3) = 0. The

first term only produces Y 1-terms, while the second produces only other powers of Y , so the
two parts must be zero. This implies that f1 is the zero polynomial, and that f0 is a relation
on X3, X2Y, Y 3. A similar division argument shows that any polynomial in T, U,W that
vanishes upon mapping T 7→ X3, U 7→ X2Y , W 7→ Y 3 is a multiple of U3 − T 2W , but
U3 − T 2W = U(U2 − TV )− T (TW − UV ). This completes the proof.



§1.4: MODULES

EXAMPLE: For a ring R, the following are sources of modules:
(1) The free module of n-tuples Rn, or more generally, for a set Λ, the free module

R⊕Λ = {(rλ)λ∈Λ | rλ 6= 0 for at most finitely many λ ∈ Λ}.
(2) Every ideal I ⊆ R is a submodule of R.
(3) Every quotient ring R/I is a quotient module of R.
(4) If S is an R-algebra, (i.e., there is a ring homomorphism α : R→ S), then S is an R-module

by restriction of scalars: r · s := α(r)s.
(5) More generally, if S is an R-algebra and M is an S-module, then M is also an R-module by

restriction of scalars: r ·m := α(r) ·m.
(6) Given an R-module M and m1, . . . ,mn ∈ M , the module of R-linear relations on

m1, . . . ,mn is the set of n-tuples [r1, . . . , rn]tr ∈ Rn such that
∑

i rimi = 0 in R.

DEFINITION: Let M be an R-module. Let S be a subset of M . The submodule generated by S,
denoted1 ∑

m∈S Rm, is the smallest R-submodule of M containing S. Equivalently,∑
m∈S

Rm =
{∑

rimi | ri ∈ R,mi ∈ S
}

is the set of R-linear combinations of elements of S.

We say that S generates M if M =
∑

m∈S Rm.

DEFINITION: A2 presentation of an R-algebra M consists of a set of generators m1, . . . ,mn of M
as an R-module and a set of generators v1, . . . , vm ∈ Rn for the submodule of R-linear relations on
m1, . . . ,mn. We call the n×m matrix with columns v1, . . . , vm a presentation matrix for M .

LEMMA: If M is an R-module, and A an n×m presentation matrix3 for M , then M ∼= Rn/im(A).
We call the module Rn/im(A) the cokernel of the matrix A.

(1)(1) Let M be an R-module and m1, . . . ,mn ∈M .
(a)(a) Briefly explain why the characterizations of the submodule generated by S are equivalent.
(b)(b) Briefly explain why

∑
iRmi is the image of the R-module homomorphism β : Rn →M

such4 that β(ei) = mi.
(c)(c) Let I be an ideal of R. How does a generating set of I as an ideal compare to a generating

set of I as an R-module?
(d)(d) Explain why the Lemma above is true.
(e)(e) If M has an a× b presentation matrix A, how many generators and how many (generating)

relations are in the presentation corresponding to A?
(f)(f) What is a presentation matrix for a free module?

(a)(a) (⊆) : The elements of the form
∑
rimi form a submodule of M that contains S. (⊇) :

A submodule that contains S must also contain the elements of the form
∑
rimi.

1If S = {m} is a singleton, we just write Rm, and if S = {m1, . . . ,mn}, we may write
∑

i Rmi.
2As written, there is a finite set of generators, and a finite set of generators for their relations. This is called a finite presenta-
tion. One could do the same thing with an infinite generating set and/or infinite generating set for the relations.

3im(A) denotes the image or column space of A in Rn. This is equal to the module generated by the columns of A.
4where ei is the vector with ith entry one and all other entries zero.



(b)(b) This is just unpackaging im(β): β((r1, . . . , rn)) = β(
∑

i riei) =
∑

i rimi.
(c)(c) They are the same.
(d)(d) Follows from (b) and First Isomorphism Theorem.
(e)(e) There are a generators and b relations.
(f)(f) A matrix is free if and only if it has zero presentation matrix.

(2)(2) Describe Z[
√

2] as a Z-module.

Z[
√

2] is a free Z-module with basis 1,
√

2.

(3)(3) Module structure for polynomial rings and quotients:
(a)(a) Let R = A[X] be a polynomial ring. Give a generating set for R as an A-module. Is R a

free A-module?
(b)(b) Let R = A[X, Y ] be a polynomial ring. Give a generating set for R as an A-module. Is R a

free A-module?
(c)(c) Let R = A[X]/(f), where f is a monic polynomial of top degree d. Apply the Division

Algorithm to show that R is a free A-module with basis [1], [X], . . . , [Xd−1].
(d)(d) Let R = C[X, Y ]/(Y 3 − iXY + 7X4). Describe R as a C[X]-module, and then give a

C-vector space basis.

(a)(a) R is free on basis 1, X,X2, . . . .
(b)(b) R is free on basis 1, X,X2, . . . , Y,XY,XY 2, . . . , Y 2, XY 2, X2Y 2, . . . . . . .
(c)(c) We need to show that any [g] ∈ R has a unique expression as an A-linear combination of

[1], . . . , [Xd−1]. Given [g], take a represenatative g; use the division algorithm to write
g = qf + r with top deg r ¡ d. Thus [g] = [r], and since r ∈ A1 + AX + · · ·+ AXd−1,
[g] = [r] ∈ A[1]+· · ·+A[Xd−1]. For uniqueness, it suffices to show linear independence
of [1], . . . , [Xd−1]; a nontrivial relation would yield a multiple of f in A[X] of degree
less than d, which cannot happen.

(d)(d) R is free over C[X] on [1], [Y ], [Y 2]. It has as a vector space basis
{[X iY j] | i ≥ 0, j ∈ {0, 1, 2}.}.

(4)(4) Let R = C[X] and S = C[X,X−1] ⊆ C(X). Find a generating set for S as an R-module. Does
there exist a finite generating set for S as an R-module? Is S a free R-module?

S is generated by {1/Xn | n ≥ 0}. S cannot be generated by a finite set: if
S = Rf1 + · · ·+Rfn, among f1, . . . , fn there is a largest power of X in the denominator,
say m. Then S ⊆ R 1

Xm , but 1
Xm+1 ∈ S r R 1

Xm . S is not free: if it were, there would be
a basis element s, and s /∈ xS, as this would lead to a nontrivial relation with other basis
elements, but S = xS, so this is impossible.

(5) Presentations of modules: Let K be a field, and R = K[X, Y ] be a polynomial ring.
(a) Consider the quotient ring K ∼= R/(X, Y ) as an R-module. Find a presentation for K as an

R-module.
(b) Consider the ideal I = (X, Y ) as an R-module. Find a presentation for I as an R-module.
(c) Consider the ideal J = (X2, XY, Y 2) as an R-module. Find a presentation for J as an

R-module.



(a) [1] generates K, and X, Y are the defining relations. So, a presentation matrix is [X, Y ].
(b) A generating set is {X, Y }. To find the relations, suppose that fX + gY = 0. Then

fX = −gY . Writing out f,−g in terms of monomials, one sees that −g must be a
multiple ofX and f must be a multiple of Y so f = hY ,−g = jX . Then hXY = jXY ,

so j = h. Thus, the relation
[
f
g

]
can be written as h

[
Y
−X

]
. A defining relation (and

hence the presentation matrix) is
[
Y
−X

]
.

(c) A generating set is {X2, XY, Y 2}. We have relations

 Y
−X

0

 and

 0
Y
−X

 corresponding

to Y (X2) − X(XY ) = 0 and Y (XY ) − X(Y 2) = 0. We claim that these generate.

Suppose that aX2+bXY+CY 2 = 0; we want to show that

ab
c

 ∈ im

 Y 0
−X Y

0 −X

. We

can write a = a′Y + a′′ with a′′ ∈ K[X] and subtracting a′

 Y
−X

0

, we obtain a relation

with a ∈ K[X]; similarly, we can assume c ∈ K[Y ]. Then plugging in a(X)X2 +
b(X, Y )XY +c(Y )Y 2, since each sum has no possible monomials in common, we must
have a = b = c = 0. This shows the claim.

(6) Let M be an R-module, S ⊆ M a generating set, and r ∈ R. Show that rM = 0 if and only if
rm = 0 for all m ∈ S.

The forward direction is clear. For the other, writing m =
∑

i rimi with mi ∈ S, if rmi = 0,
then rm = 0.

(7) Let K be a field, S = K[X, Y ] be a polynomial ring, and R = K[X2, XY, Y 2] ⊆ S. Find
an R-module M such that S = R ⊕M as R-modules. Given a presentations for S and M as
R-modules.

We can take M to be the collection of polynomials all of whose terms have odd degree.
Note that M is indeed closed under multiplication by R. A presentation matrix for M is[
XY Y 2

−X2 −XY

]
and for S is

 0 0
XY Y 2

−X2 −XY

.

(8) Messing with presentation matrices: Let M be a module with an n×m presentation matrix A.
(a) If you add a column of zeroes to A, how does M change?
(b) If you add a row of zeroes to A, how does M change?
(c) If you add a row and column to A, with a 1 in the corner and zeroes elsewhere in the new

row and column, how does M change?

(d) If A is a block matrix
[
B 0
0 C

]
, what does this say about M?



(a) It doesn’t.
(b) Corresponds to adding a free copy of R as a direct sum.
(c) It doesn’t.
(d) M ∼= coker(B)⊕ coker(C)



§1.5: DETERMINANTS

Recall that given matrices A and B, the matrix product AB consists of linear combinations, namely:
Each column of AB is a linear combinations of the columns of A, with coefficients/weights coming
from the corresponding columns of B. That is,(

col j of AB
)
=

t∑
i=1

bij ·
(
col i of A);

note that b1j, . . . , btj is the j-th column of B.

PROPERTIES OF det: For a ring R, the determinant is a function det : Matn×n(R)→ R such that:
(1) det is a polynomial expression of the entries of A of degree n.
(2) det is a linear function of each column.
(3) det(A) = 0 if the columns are linearly dependent.
(4) det(AB) = det(A) det(B).
(5) det can be computed by Laplace expansion along a row/column.
(6) det(A) = det(Atr).
(7) If φ : R → S is a ring homomorphism, and φ(A) is the matrix obtained from A by applying φ

to each entry, then det(φ(A)) = φ(det(A)).

ADJOINT TRICK: For an n× n matrix A over R,

det(A)1n = AadjA = AAadj,

where (Aadj)ij = (−1)i+j det(matrix obtained from A by removing row j and column i).

EIGENVECTOR TRICK: Let A be an n × n matrix, v ∈ Rn, and r ∈ R. If Av = rv, then
det(r1n − A)v = 0. Likewise, if instead v is a row vector and vA = rv, then det(r1n − A)v = 0.

DEFINITION: Given an n×mmatrixA and 1 ≤ t ≤ min{m,n} the ideal of t× tminors ofA, denoted
It(A), is the ideal generated by the determinants of all t× t submatrices of A given by choosing t rows
and t columns. For t = 0, we set I0(A) = R and for t > min{m,n} we set It(A) = 0.

LEMMA: If A is an n×m matrix, B is an m× ` matrix, and t ≤ 1, then
• It+1(A) ⊆ It(A)
• It(AB) ⊆ It(A) ∩ It(B).

PROPOSITION: Let M be a finitely presented module. Suppose that A is an n×m presentation matrix
for M . Then In(A)M = 0. Conversely, if fM = 0, then f ∈ In(A)n.

(1)(1) Let M be a module. Suppose that m1, . . . ,mn is a generating set with corresponding presentation
matrix A. Which of the following is true:

A

m1
...
mn

 ?
= 0

[
m1 · · · mn

]
A

?
= 0.

Explain your answer in terms of the recollection on matrix multiplication above.



The second one!

(2)(2) Eigenvector Trick:
(a)(a) What familiar fact/facts from linear algebra (over fields) is/are related to the Eigenvector Trick?
(b)(b) Use the Adjoint Trick to prove the Eigenvector Trick.

(a)(a) Over a field, an eigenvalue of a matrix is a root of the characteristic polynomial.
(b)(b) If Av = rv, then (A − r1n)v = 0, so multiply by (A − r1n)

adj to get det(A − r1n)v =
(A− r1n)

adj(A− r1n)v = 0. Likewise on the other side.

(3)(3) Show that a square matrix over a ring R is invertible if and only if its determinant is a unit.

If AB = 1n, then det(A) det(B) = det(1n) = 1, so det(A) is a unit. On the other hand, if
det(A) is a unit, then B = det(A)−1Aadj is an inverse of A by the adjoint trick.

(4)(4) Proof of Proposition:
(a)(a) First consider the case m = n. Show that det(A) kills each generator mi, and conclude that

In(A)M = 0.
(b)(b) Now consider the case n ≤ m. Show that for any n× n submatrix A′ of A that det(A′)M = 0,

and conclude that In(A)M = 0. What’s the deal when m < n?
(c)(c) For the “conversely” statement, show that if fM = 0 then there is some matrix B such that

AB = f1n, and deduce that f ∈ In(A)n.

(a)(a) Since A is a presentation matrix for M , with the corresponding generating set m1, . . . ,mn,
we have

[
m1 . . . mn

]
A = 0. By the adjoint trick, det(A)

[
m1 . . . mn

]
= 0, so

det(A) kills each generator of M . Thus, det(A) kills M . By definition In(A) = (det(A)),
so we are done.

(b)(b) Suppose n ≤ m and fix m columns of A to form an n × n submatrix A′. The columns
of A′ are still relations on m1, . . . ,mn, so the same argument shows that det(A′) kills
M . Now, by definition, In(A) is generated by the determinants of the submatrices A′, so
In(A)M = 0.
When m < n, In(A) = 0, which very much kills M .

(c)(c) If fM = 0, then the vector with f in the ith entry and zeroes elsewhere is a relation on the
generators, so by definition of presentation matrix, this vector is a linear combination of the
columns of A. Thus each column f1n is a linear combination of the columns of A, which
means that we can write f1n = AB for some matrix B following the discussion above. By
the Lemma, we have fn = det(f1n) ∈ In(AB) ⊆ In(A). This completes the proof.

(5) Prove the Lemma above.

The first statement follows from Laplace expansion. For the second, it suffices to show that
the determinant of any t × t submatrix of AB is a linear combination of determinants of t × t
submatrices ofA; the claim forB follows by applying transposes. We can restrict to the relevant
rows ofA and columns ofB, so we can assume thatA is t×n andB is n×t for some n ≥ t. Then
AB is a matrix whose columns are linear combinations of the columns ofA. Then using linearity
of det in each column, we can write det(AB) as a linear combination of the determinants of
matrices with columns from A, which shown the claim.



(6) Prove1 FITTING’S LEMMA: If A and B are presentation matrices for the same R-module M of size
n×m and n′ ×m′ (respectively), and t ≥ 0, then In−t(A) = In′−t(B).

1Hint: First consider the case when the two presentations have the same generating sets, but different generating sets for the
relations. Reduce to the case where B = [A|v] for a single column v.



§2.6: ALGEBRA-FINITE AND MODULE-FINITE EXTENSIONS

DEFINITION: Let φ : R→ S be a ring homomorphism.
• We say that φ is algebra-finite, or S is algebra-finite over R, if S is a finitely generated R-algebra.
• We say that φ is module-finite, or S is module-finite over R, if S is a finitely generated R-module.
One also often encounters the less self-explanatory terms finite type for algebra-finite, and finite for
module-finite, but we will avoid these.

LEMMA: A module-finite map is algebra-finite. The converse is false.

DEFINITION: Let R be an A-algebra. We say that an element r ∈ R is integral over A if r satisfies a
monic polynomial with coefficients in A.

PROPOSITION: Let R be an A-algebra. If r1, . . . , rn ∈ R are integral over A, then A[r1, . . . , rn] is
module-finite over A.

(1)(1) Algebra-finite vs module-finite: Let φ : A→ R be a ring homomorphism and r1, . . . , rn ∈ R.
(a)(a) Agree or disagree: an A-linear combination of r1, . . . , rn is a special type of polynomial ex-

pression of r1, . . . , rn with coefficients in A.
(b)(b) Explain why R =

∑n
i=1Ari implies R = A[r1, . . . , rn]. Explain why module-finite implies

algebra-finite.
(c)(c) Let R = A[X] be a polynomial ring in one variable over A. Is the inclusion map A ⊆ A[X]

algebra-finite? Module-finite?
(d)(d) Give an example of a map that is module-finite (and hence also algebra-finite).
(e)(e) Give an example of a map that is not algebra-finite (and hence also not module-finite).

(a)(a) Agree.
(b)(b) The first part follows from what you just agreed to.
(c)(c) Algebra-finite but not module-finite.
(d)(d) Possibilities include Z ⊆ Z[

√
2], R ⊆ C

(e)(e) Possibilities include Z ⊆ Q, K ⊆ K[X1, X2, . . . ].

(2)(2) Integral elements: Use the definition of integral to determine whether each is integral or not.
(a)(a) An indeterminate X in a polynomial ring A[X], over A.
(b)(b) 3
√
2, over Z.

(c)(c) 1
2
, over Z.

(a)(a) No: X satisfies no polynomial over A.
(b)(b) Yes: 3

√
2 is a root of T 3 − 2.

(c)(c) No: given T n + a1T
n−1 + · · · + an = 0 with ai ∈ Z, plugging in T = 1/2 and clearing

denominators gives 1 + 2a1 + · · ·+ 2nan = 0, which is impossible.

(3)(3) Proof of Proposition: Let A be a ring.
(a)(a) Let f ∈ A[X] be monic, and let T = A[X]/(f). Explain why T is module-finite over A. What

is a generating set?
(b)(b) Let R = A[r] be an algebra generated by one element r ∈ R. Suppose that r satisfies a monic

polynomial f ∈ A[X]. How is R related to the ring T as in part (a)? Must they be equal?
(c)(c) Show that R as in (b) is module-finite over A. What is a generating set?



(d)(d) Let S = A[r1, . . . , rt] with r1, . . . , rt ∈ S integral over A. Use (c) and (4b) below to show that
A→ S is module-finite.

(a)(a) We showed earlier that T is a free A-module with basis given by powers of [X] of degree
less than the top degree of f .

(b)(b) R is a quotient of T , but could be smaller (a proper quotient). For example, take R =
Z[X]/(X2, 2X).

(c)(c) It is generates by the powers of [X] of degree than the top degree of f .
(d)(d) This follows from (c), 2(b), and induction.

(4) Finiteness conditions and compositions: Let R ⊆ S ⊆ T be rings.
(a) If R ⊆ S and S ⊆ T are algebra-finite, show1 that the composition R ⊆ T is algebra-finite.
(b) If R ⊆ S and S ⊆ T are module-finite, show2 that the composition R ⊆ T is module-finite.

(a) If S = R[s1, . . . , sm] and T = S[t1, . . . , tn]. We claim that T = R[s1, . . . , sm, t1, . . . , tn].
Suppose that T ′ ⊆ T is an R-subalgebra containing s1, . . . , sm, t1, . . . , tn. Since
s1, . . . , sm ∈ T ′, we have S ⊆ T ′ so T ′ is a S-subalgebra of T . But since t1, . . . , tn ∈ T ′
we then must have T ′ = T .

(b) If S =
∑

iRai and T =
∑

j Sbj , we claim that T =
∑

i,j Raibj . Indeed, given t ∈ T , we
can write t =

∑
j sjbj , and for each sj we can write sj =

∑
i ri,jai, so t =

∑
j(
∑

i ri,jai)bj
is an R-linear combination of aibj .

(5) Power series rings:
(a) Let A→ R be algebra-finite. Show that R is a countably-generated A-module.
(b) Let A be a ring and R = AJXK be a power series ring over A. Show3 that R is not a countably

generated A-module. Deduce that R is not algebra-finite over A.

(a) If R = A[X1, . . . , Xn], then R is a free A-module on basis given by monomials. This is
a countable set, so R is a countably-generated A-module. In the general case of A → R
be algebra-finite, R is a quotient of a polynomial ring in finitely many variable, so R is a
countably-generated A-module.

(b) Suppose R =
∑∞

i=1Afi is countably generated. Write [g]≤j for the sum of terms in g of
degree at most j and similar things.
We claim that there is some g ∈ R such that [g]≤n2 /∈

∑n
i=1A[fi]≤n2 . We con-

struct such g recursively. Suppose we have such a g that satisfies the condition some
n. We need to show that there are coefficients an2+1, . . . , a(n+1)2 such that [g]≤(n+1)2 /∈∑n+1

i=1 A[fi]≤(n+1)2; we will choose these coefficients with the stronger property that
[g]>n&≤(n+1)2 /∈

∑n+1
i=1 A[fi]>n&≤(n+1)2 . To do this, just note that

∑n+1
i=1 A[fi]>n&≤(n+1)2

is a submodule of A2n+1 with n + 1 generators, so is a proper submodule; choose any
element of the complement. Thus there exists a g as claimed.

1Hint: If S = R[s1, . . . , sm] and T = S[t1, . . . , tn], apply the definition of “algebra generated by” to
R[s1, . . . , sm, t1, . . . , tn] ⊆ T . Why must the LHS contain S? After that, why must it contain T ?

2Hint: If S =
∑

i Rsi and T =
∑

j Stj , use the “linear combinations” characterization of module generators to show
T =

∑
i,j Rsitj .

3Hint: Write [g]≤j for the sum of terms in g of degree at most j. Suppose R =
∑∞

i=1 Afi, and construct g ∈ R such that
[g]≤n2 /∈

∑n
i=1 A[fi]≤n2 .



But then g /∈
∑∞

i=1Afi, since if it were, g would be an A-linear combination of finitely
many such fi, so g ∈

∑N
i=1Afi for some N , and hence [g]≤N2 ∈

∑N
i=1A[fi]≤N2 , a contra-

diction.
It follows from (1) that R is not a finitely-generated A-algebra.

(6) Let R ⊆ S ⊆ T be rings.
(a) If R ⊆ T is algebra-finite, must S ⊆ T be? What about R ⊆ S?
(b) If R ⊆ T is module-finite, must S ⊆ T be? What4 about R ⊆ S?

(a) S ⊆ T must be, as following immediately from the definition. R ⊆ S need not, e.g., for
K[X] ⊆ K[X,XY,XY 2, · · · ] ⊆ K[X, Y ].

(b) S ⊆ T must be, as following immediately from the definition. R ⊆ S need not, e.g., for
K[X1, X2, . . . ] ⊆ K[X1, X2, . . . ]n (X1, X2, . . . ) ⊆ K[X1, X2, . . . ]nK[X1, X2, . . . ].

(7) Let R be a ring, and M be an R-module. The Nagata idealization of M in R, denoted R nM , is
the ring that
• as a set and an additive group is just R×M = {(r,m) | r ∈ R,m ∈M}, and
• has multiplication (r,m)(s, n) = (rs, rn+ sm).

Convince yourself that RnM is an R-algebra. Show that R ⊆ RnM is module-finite if and only
if M is a finitely generated R-module.

4Hint: Use a problem below.



§2.7: INTEGRAL EXTENSIONS

DEFINITION: Let φ : A→ R be a ring homomorphism. We say that φ is integral or that R is integral
over A if every element of R is integral over A.

THEOREM: A homomorphism φ : A→ R is module-finite if and only if it is algebra-finite and integral.
In particular, every module-finite extension is integral.

COROLLARY 1: An algebra generated (as an algebra) by integral elements is integral.

COROLLARY 2: If R ⊆ S is integral, and x is integral over S, then x is integral over R.

PROPOSITION: Let R ⊆ S be an integral extension of domains. Then R is a field if and only if S is a
field.

DEFINITION: Let A be a ring, and R be an A-algebra. The integral closure of A in R is the set of
elements in R that are integral over A.

(1)(1) Proof of Theorem:
(a)(a) Very briefly explain why, to prove that module-finite implies integral in general, it suffices to

show the claim for an inclusion A ⊆ R.
(b)(b) Take a module generating set {1, r2, . . . , rn} for R as an A-module, and write it as a row vector

v =
[
1 r2 · · · rn

]
. Let x ∈ R. Explain why there is a matrix M ∈ Matn×n(A) such that

vM = xv.
(c)(c) Apply a TRICK to obtain a monic polynomial over A that x satisfies.
(d)(d) Combine the previous parts with results from last time to complete the proof of the Theorem.

(a)(a) You can replace A by φ(A) for both.
(b)(b) xri ∈ R for each i, so each xri is an A-linear combination of 1, r2, . . . , rn. We can write

these linear combinations using matrix multiplication.
(c)(c) The eigenvector trick implies that det(M − x1n) kills v; since 1 is an entry of v,

det(M − x1n) = 0, so x is a root of the polynomial det(M −X1n) = 0, which is monic.
(d)(d) The previous part shows that module-finite implies integral. We already saw that module-

finite implies algebra-finite. Also, if R = A[r1, . . . , rm] and R is integral over A, then each
ri is integral over R. We saw last time that R as above is module-finite over A.

(2)(2) Let R = C[X,X1/2, X1/3, . . . ] ⊆ C(X), where X1/n is an nth root of X . Is C[X] ⊆ R integral1?
Is it module-finite? Is it algebra-finite?

Each algebra generator X1/n satisfies a polynomial T n −X = 0, so is integral over C[X]. By
the Corollary, R is integral over C[X]. It is not algebra-finite or module-finite. The argument is
similar to examples we have done before: if it was, it would be generated by a finite subset of
{X1/n}, but there would then be a largest denominator on the powers of X .

(3)(3) Proof of Corollary 1: Let R be an A-algebra.
(a)(a) If x, y ∈ R are integral over A, explain why A[x, y] ⊆ R is integral over A. Now explain why

x± y and xy are integral over A.

1You might find the Corollary helpful.



(b)(b) Deduce that the integral closure of A in R is a ring, and moreover an A-subalgebra of R.
(c)(c) Now let S be a set of integral elements. Apply (b) to the ringR = A[S] in place ofR. Complete

the proof of the Corollary.

(a)(a) A[x, y] is module-finite over A, and x± y and xy ∈ A[x, y].
(b)(b) This follows from (a) plus the fact that every element of A is obviously integral over A.
(c)(c) The integral closure of A in A[S] is a subalgebra of A that contains S, so by definition of

generators must be all of A[S]. Thus A[S] is integral over A.

(4) Proof of Proposition:
(a) First, assume that S is a field, and let r ∈ R be nonzero. Explain why r has an inverse in S.
(b) Take an integral equation for r−1 ∈ S overR, and solve for r−1 in terms of things inR. Deduce

that R must also be a field.
(c) Now, assume that R is a field, and that S is a domain, and let s ∈ S be nonzero. Explain why

R[s] is a finite-dimensional vector space.
(d) Explain why the multiplication by s map from R[s] to itself is surjective. Deduce that S must

also be a field.

(a) Because S is a field.
(b) Take (r−1)n + r1(r

−1)n−1 + · · ·+ rn = 0. Multiplying through, r−1 = −r1 − r2r − · · · −
rnr

n−1 ∈ R.
(c) R[s] is module-finite over R; for a field, this means finite-dimensional.
(d) Since s is nonzero, and S is a domain, multiplication by s is injective. But this is an R-

linear map from R[s] to itself, and since R[s] is a finite-dimensional vector space, this is
also surjective. That means that 1 = ss′ for some s′, so s is a unit. Thus, S is also a field.

(5) Prove Corollary 2.

Let R ⊆ S be integral and x be integral over S. Let xn + s1x
n−1 + · · · + sn = 0 with si ∈ S.

Then x is integral over R[s1, . . . , sn], so R[s1, . . . , sn, x] is module-finite over R[s1, . . . , sn].
ButR[s1, . . . , sn] is module-finite overR, soR[s1, . . . , sn, x] is module-finite overR, and hence
integral over R. In particular, x is integral over R.

(6) Let A = C[X, Y ] be a polynomial ring, and R =
C[X, Y, U, V ]

(U2 − UX + 3X3, V 2 − 7Y )
. Find an equation

of integral dependence for U + V over A.



§2.8: UFDS AND NORMAL RINGS

DEFINITION: Let R be a domain. The normalzation of R is the integral closure of R in Frac(R). We
say that R is normal if it is equal to its normalization, i.e., if R is integrally closed in its fraction field.

PROPOSITION: If R is a UFD, then R is normal.

LEMMA: A domain is a UFD if and only if
(1) Every nonzero element has a factorization1 into irreducibles, and
(2) Every irreducible element generates a prime ideal.

THEOREM: If R is a UFD, then the polynomial ring R[X] is a UFD.

(1)(1) Use the results above to explain why K[X1, . . . , Xn] (with K a field) and Z[X1, . . . , Xn] are normal.

Because fields and Z are UFDs, so K[X1, . . . , Xn] and Z[X1, . . . , Xn] are UFDs, hence normal.

(2)(2) Prove the Proposition above.

Let k = a/b be in the fraction field of R written in lowest terms. Suppose that k is integral over
R and take an equation kn + r1k

n−1 + · · · + rn = 0. Plugging in and clearing denominators
gives an + r1a

n−1b + · · · + rnb
n = 0. Then an is a multiple of b, so any irreducible factor of

b is an irreducible factor of a by unique factorization. The only possibility is that b admits no
irreducible factors; i.e., b is a unit, so k ∈ R.

(3)(3) Let K be a module-finite field extension of Q. The ring of integers in K, sometimes denoted OK ,
is the integral closure of Z in K.
(a)(a) What is the ring of integers in Q(

√
2)?

(b)(b) For L = Q(
√
−3), show that 1+

√
−3

2
∈ OL. In particular, OL % Z[

√
−3].

(c)(c) Explain why OK is normal.
(d)(d) Explain why, if Z ⊆ OK is algebra-finite, then OK

∼= Zn as abelian groups for some n ∈ N.
(e)(e) Do we have a theorem that implies Z ⊆ OK is algebra-finite?

(a)(a) Z[
√
2].

(b)(b) If ω = 1+
√
−3

2
, note that ω2 = −1+1

√
−3

2
= ω − 1, so ω2 − ω + 1 = 0.

(c)(c) If k ∈ K is integral over OK , then k is integral over OK and hence over Z (by Corollary 2
from last time). Then by definition, k ∈ OK .

(d)(d) If Z ⊆ OK is algebra-finite, then since it is integral, it is also module-finite. OK is definitely
torsion free, since it’s contained in a field, so by the structure theorem for fg abelian groups,
it is isomorphic to a finite number of copies of Z.

(e)(e) Not yet!

(4) Discuss the proof of the Lemma above.

We show by induction on n, that for any element r ∈ R that can has an irreducible factoriza-
tion as a unit times a product on n irreducibles (counting repetitions), that any other irreducible

1i.e., for any r ∈ R, there exists a unit u and a finite (possibly empty) list of irreducibles a1, . . . , an such that r = ua1 · · · an.



factorization agrees with the given one up to associates and reordering. If r is a unit, then any
factorization only consists of units, since otherwise r is a divisible by prime element, contra-
dicting that it is a unit.

Say that p is an irreducible in the first factorization of r, so r = ps for some s. Then given any
irreducible factorization of r, p must divide some irreducible factor since (p) is prime, and by
definition, p must be associate to that irreducible. Then we can cancel p from both factorizations
and apply the induction hypothesis to s.

(5) Let K be a field, and R = K[X2, XY, Y 2] ⊆ K[X, Y ]. Prove2 that R is not a UFD, but R is normal.

This solution is embargoed.

(6) Prove the Theorem above. You might find it useful to recall the following:
GAUSS’ LEMMA: Let R be a UFD and let K be the fraction field of R.
(a) f ∈ R[X] is irreducible if and only if f is irreducible in K[X] and the coefficients of f have

no common factor.
(b) Let r ∈ R be irreducible, and f, g ∈ R[X]. If r divides every coefficient of fg, then either r

divides every coefficient of f , or r divides every coefficient of g.

(7) Let R be a normal domain, and s be an element of some domain S ⊇ R. Let K be the fraction field
of R. Show that if s is integral over R, then the minimal polynomial of s has all of its coefficients
in R.

2Hint: Use K[X,Y ] to your advantage.



§2.9: NOETHERIAN RINGS

DEFINITION: A ring R is Noetherian if every ascending chain of ideals I1 ⊆ I2 ⊆ I3 ⊆ · · · eventually
stabilizes: i.e., there is some N such that In = IN for all n ≥ N .

HILBERT BASIS THEOREM: If R is a Noetherian ring, then the polynomial ring R[X] and power series
ring RJXK are also Noetherian.

We will return to the proof of Hilbert Basis Theorem after discussing Noetherian modules next time.

COROLLARY: Every finitely generated algebra over a field is Noetherian.

(1)(1) Equivalences for Noetherianity.
(a)(a) Show1 that R is Noetherian if and only if every ideal is finitely generated.
(b)(b) Show2 that R is Noetherian if and only if every nonempty collection of ideals has a maximal3

element.

(a)(a) (⇐) Suppose that every ideal is finitely generated, and take a chain I1 ⊆ I2 ⊆ · · · . Consider
I =

⋃
n In. This is an ideal (it was important that we had a chain, not an arbitrary collection

of ideals for this step), and by hypothesis we have I = (f1, . . . , fm). For each i, there is
some ni such that fi ∈ Ini

. Let N = max{ni}. Then I = (f1, . . . , fm) ⊆ IN ⊆ I , so
equality holds, and the chain stabilizes at N .
(⇒) Suppose that there is an ideal I that is not finitely generated. Then we construct an
infinite chain as follows: let f1 ∈ I r 0 (0 is finitely generated so I 6= 0), and set I1 = (f1),
and for each n take fn+1 ∈ I r In = (f1, . . . , fn), (In is finitely generated so I 6= In).

(b)(b) (⇐) Suppose that every nonempty collection of ideals has a maximal element. Then a chain
of ideals I1 ⊆ I2 ⊆ I3 ⊆ · · · is, in particular, a nonempty collection of ideals, hence has a
maximal element, say In. Then for n ≥ n, IN ⊆ In and maximality of IN imply IN = In.
(⇒) Suppose that there is a nonempty collection of ideals without a maximal element, say
S. Let I1 be any element of S. Then, by definition, there is some I2 that properly contains
I1, and so on, yielding a chain that does not stabilize.

(2)(2) Some Noetherian rings:
(a)(a) Show that fields and PIDs are Noetherian.
(b)(b) Show that if R is Noetherian and I ⊆ R, then R/I is Noetherian.
(c)(c) Is4 every subring of a Noetherian ring Noetherian?

(a)(a) Every element of a field is generated by no elements; every element of a PID is generated
by one element.

(b)(b) The ideals of R/I are in containment-preserving bijection with ideals of R containing I . A
chain of ideals in R containing I must stabilize, so the corresponding chain in R/I must
stabilize as well.

1For the backward direction, consider
⋃

n∈N In
2Hint: For the forward direction, show the contrapositive.
3This means that if S is our collection of ideals, there is some I ∈ S such that no J ∈ S properly contains I . It does not mean
that there is a maximal ideal in S.

4Hint: Every domain has a fraction field, even the domain from (4a).



(c)(c) No: K[X1, X2, . . . ] is not Noetherian, but it is a subring of its fraction field K(X1, X2, . . . ),
which is a field, hence Noetherian.

(3)(3) Use the Hilbert Basis Theorem to deduce the Corollary.

From the Hilbert Basis Theorem and induction, if R is Noetherian, then R[X1, . . . , Xn] is as
well. In particular, if K is a field, then K[X1, . . . , Xn] is too. Since a finitely generated K-
algebra is a quotient of some K[X1, . . . , Xn], then any such ring is Noetherian as well.

(4)(4) Some nonNoetherian rings:
(a)(a) Let K be a field. Show that K[X1, X2, . . . ] is not Noetherian.
(b) Let K be a field. Show that K[X,XY,XY 2, . . . ] is not Noetherian.
(c) Show that C([0, 1],R) is not Noetherian.

(a)(a) The ideal (X1, X2, . . . ) is not finitely generated.
(b) The ideal (X,XY, . . . ) is not finitely generated.
(c) The ideal

√
(x) = m0 is not finitely generated.

(5) Let R be a Noetherian ring. Show that for every ideal I , there is some n such that
√
I
n ⊆ I . In

particular, there is some n such that for every nilpotent element z, zn = 0.

Let
√
I = (f1, . . . , fm). For each i, there is some ni such that fni

i ∈ I . Then for n ≥
n1 + · · ·+ nm −m+ 1, any generator fa1

1 · · · fam
m with

∑
ai = n must have aj ≥ nj for some

j, and hence fa1
1 · · · fam

m ∈ I .
For the particular case, we consider

√
0.

(6) Let R be Noetherian. Show that every element of R admits a decomposition into irreducibles.

We argue the contrapositive. Suppose that r ∈ R does not admit a decomposition into irre-
ducibles. Then in particular, r is reducible, so r = r1r

′
1, with r′1 not a unit, so (r) $ (r1).

Likewise, r1 is reducible, so r1 = r2r
′
2, with r′2 not a unit, so (r1) $ (r2). We can continue like

this forever to obtain an infinite ascending chain of principal ideals even.

(7) Prove the principle of Noetherian induction: Let P be a property of a ring. Suppose that “For every
nonzero ideal I , P is true for R/I implies that P is true for R” and P holds for all fields. Then P is
true for every Noetherian ring.

(8) (a) Suppose that every maximal ideal of R is finitely generated. Must R be Noetherian?
(b) Suppose that every ascending chain of prime ideals stabilizes. Must R be Noetherian?
(c) Suppose that every prime ideal of R is finitely generated. Must R be Noetherian?

(a) No. One counterexample is C∞([0, 1],R). Prove it!
Here is another more algebraic example: Let K be a field, and R be the subring of K(X, Y )
consisting of elements that can be written as f/g with f = aXn + bY and g = uXn + cY
for some n ≥ 0, a, b, c ∈ K[X, Y ], and u ∈ K[X, Y ] with nonzero constant term. I leave it
to you to show that



• R is indeed a subring of K(X, Y ),
• the ideal (X) is a maximal ideal,
• any r ∈ Rr (X) is a unit, so (X) is the unique maximal ideal, and
• the ideal (Y, Y/X, Y/X2, . . . ) is not finitely generated.

This example is not totally coming from nowhere; see if you can find the train of thought
behind it.

(b) No.
(c) Yes.



§2.10: NOETHERIAN MODULES

DEFINITION: A module is Noetherian if every ascending chain of submodules M1 ⊆ M2 ⊆ M3 ⊆ · · ·
eventually stabilizes: i.e., there is some N such that Mn = MN for all n ≥ N .

THEOREM: If R is a Noetherian ring, then an R-module M is Noetherian if and only M is finitely generated.

COROLLARY: If R is a Noetherian ring, then a submodule of a finitely generated R-module is finitely
generated.

LEMMA: Let M be an R-module and N ⊆ M a submodule. Let L,L′ be two more submodules of M .
Then L = L′ if and only if L ∩N = L′ ∩N and L+N

N
= L′+N

N
.

(1)(1) Equivalences for Noetherianity.
(a)(a) Explain why M is Noetherian if and only if every submodule of M is finitely generated.
(b)(b) Explain why M is Noetherian if and only if every nonempty collection of submodules has a maxi-

mal element.

(a)(a) Analogous to what we did with ideals.
(b)(b) Analogous to what we did with ideals.

(2)(2) Submodules and quotient modules: Let N ⊆M .
(a)(a) Show that if M is a Noetherian R-module, then N is a Noetherian R-module.
(b)(b) Show that if M is a Noetherian R-module, then M/N is a Noetherian R-module.
(c)(c) Use the Lemma above to show that if N and M/N are Noetherian R-modules, then M is a Noe-

therian R-module.

(a)(a) A chain of submodules of N is a chain of submodules of M , so by hypothesis must stabilize.
(b)(b) The submodules of M/N are in containment-preserving bijection with the submodules of M

that contain N , so a chain of submodules of M/N must stabilize.
(c)(c) Suppose we have a chain of submodules Mi of M . By intersecting with N , we get a chain of

submodules of Mi ∩ N of N , which by hypothesis, must stabilize at some n = a. By taking
images in M/N , we get a chain of submodules Mi+N

N
of M/N that must stabilize at some

n = b. Then for n ≥ max{a, b} by the Lemma, we must have that the chain Mi stabilizes.

(3)(3) Proof of Theorem: Let R be a Noetherian ring.
(a)(a) Explain why R is a Noetherian R-module.
(b)(b) Show that Rn is a Noetherian R-module for every n.
(c)(c) Deduce the Theorem above.
(d)(d) Deduce the Corollary above.

(a)(a) The submodules of R are just the ideals of R.
(b)(b) There is a copy of Rn−1 in Rn (where the last coordinate is zero) with quotient R1, so it follows

by induction on n.
(c)(c) If M is Noetherian, then every submodule of M including M itself is finitely generated. Con-

versely, if M is finitely generated, then M is a quotient of Rn for some n, so it follows from
(3b) and (2b).

(d)(d) Follows from (3c) and (2a).

(4)(4) Proof of Hilbert Basis Theorem for R[X]: Let R be a Noetherian ring.



(a)(a) Let I be an ideal of R[X]. Given a nonzero element f ∈ R[X], set LT(f) to be the leading
coefficient1 of f and LT(0) = 0, and let LT(I) = {LT(f) | f ∈ I}. Is LT(I) an ideal of R?

(b)(b) Let f1, . . . , fn ∈ R[X] be such that LT(f1), . . . ,LT(fn) generate LT(I). Let N be the maximum of
the top degrees of fi. Show that every element of I can be written as

∑
i rifi+ g with ri, g ∈ R[X]

and the top degree of g ∈ I is less than N .
(c)(c) Write R[X]<N for the R-submodule of R[X] consisting of polynomials with top degree < N .

Show that I ∩R[X]<N is a finitely generated R-module.
(d)(d) Complete the proof of the Theorem.

(a)(a) Yes; we just check the definition.
(b)(b) We proceed by induction on top degree of f ∈ I . For f with top degree less than N , we just take

g = f and ri = 0. For f with top degree t ≥ N , write f = aX t + lower degree terms, and a =∑
i aiLT(fi). Then

∑
i aiX

t−nifi = aX t+ lower degree terms, so f ′ = f −
∑

i aiX
t−nifi ∈ I

is of lower degree. We can then write f ′ in the desired form by induction, and then the original
f as well.

(c)(c) I ∩ R[X]<N is an R-submodule of R[X]<N , which is generated by 1, X, . . . , XN−1, whence
finitely generated. Since R is Noetherian, this submodule is also Noetherian.

(d)(d) Fix an R-module generating set g1, . . . , gs for I ∩ R[X]<N . We claim that I =
(f1, . . . , fn, g1, . . . , gs). By construction we have ⊇. Then, given f ∈ I , we can write
f =

∑
i rifi + g and g =

∑
j ajgj with aj ∈ R, so f ∈ (f1, . . . , fn, g1, . . . , gs). Thus, I

is finitely generated.

(5) Proof of Hilbert Basis Theorem for RJXK: How can you modify the Proof of Hilbert Basis Theorem
for R[X] to work in the power series case? Make it happen!

We use lowest degree terms instead. Define LT(f) to be the bottom coefficient of f . Proceeding
similarly, we can show that if f1, . . . , fn ∈ RJXK are such that LT(f1), . . . ,LT(fn) generate LT(I),
then and f ∈ I can be written as

∑
i rifi + g with g a polynomial in X of top degree less than N ,

and continue as in the polynomial case.

(6) Prove the Lemma.

(7) Noetherianity and module-finite inclusions: Let R ⊆ S be module-finite.
(a) Without using the Hilbert Basis Theorem, show that is R is Noetherian, then S is Noetherian.
(b) EAKIN-NAGATA THEOREM: Show that if S is Noetherian, then R is Noetherian.

1That is, if f =
∑

i aiX
i and k = max{i | ai 6= 0}, then LT(f) = ak.



§3.11: GRADED RINGS

DEFINITION:
(1) An N-grading on a ring R is

• a decomposition of R as additive groups R =
⊕

d≥0Rd

• such that x ∈ Rd and y ∈ Re implies xy ∈ Rd+e.
(2) An N-graded ring is a ring with an N-grading.
(3) We say that an element x ∈ R in an N-graded ring R is homogeneous of degree d if x ∈ Rd.
(4) The homogeneous decomposition of an element r 6= 0 in an N-graded ring is the sum

r = rd1 + · · ·+ rdk where rdi 6= 0 homogeneous of degree di and d1 < · · · < dk.

The element rdi is the homogeneous component r of degree di.
(5) An ideal I in an N-graded ring is homogeneous if r ∈ I implies every homogenous component

of r is in I . Equivalently, I is homogeneous if can be generated by homogeneous elements.
(6) A homomorphism φ : R→ S between N-graded rings is graded if φ(Rd) ⊆ Sd for all d ∈ N.

DEFINITION: For an abelian semigroup (G,+), one defines G-grading as above with G in place of N
and g ∈ G in place of d ≥ 0. The other definitions above make sense in this context.

DEFINITION: Let K be a field, and R = K[X1, . . . , Xn] be a polynomial ring. Let G be a group acting
on R so that for every g ∈ G, r 7→ g · r is a K-algebra homomorphism. The ring of invariants of G is

RG := {r ∈ R | for all g ∈ G, g · r = r}.

(1)(1) Basics with graded rings: Let R be an N-graded ring.
(a)(a) If f ∈ R is homogeneous of degree a and g ∈ R is homogeneous of degree b, what about f + g

and fg?
(b)(b) Translate the definition of graded ring to explain why every nonzero element has a unique

homogeneous decomposition.
(c)(c) Does every element in R have a degree? What about “top degree” or “bottom degree”?
(d)(d) What is the1 degree of zero?
(e)(e) Suppose that r ∈ (s1, . . . , sm), and r is homogeneous of degree d, and si is homogeneous of

degree di. Explain why we can write r =
∑

i aisi with ai ∈ R homogeneous of degree d− di.

(a)(a) f+g is homogeneous if and only if a = b, in which case it has degree a; fg is homogeneous
of degree a+ b.

(b)(b) The direct sum decomposition means that every element can be expressed in a unique way
as a finite sum of elements from the components.

(c)(c) No; only homogeneous elements have a degree. Any nonzero element has a top degree and
a bottom degree.

(d)(d) Zero is homogeneous of every degree, since each Rn is an additive group.
(e)(e) We can write r =

∑
i bisi for some bi ∈ R. Write bi = ai+ ci where ai is the homogeneous

component of degree d− di (or zero, if there is none) and ci is the sum of the other compo-
nents. Then r =

∑
i aisi+

∑
i cisi where

∑
i aisi has degree d and

∑
i cisi lives entirely in

other degrees. By comparing homogeneous components, we must have
∑

i aisi = r (and∑
i cisi = 0).

1Hint: This is a trick question, but specify exactly how.



(2)(2) The standard grading on a polynomial ring: Let A be a ring.
(a)(a) Let R = A[X]. Discuss: the decomposition Rd = A ·Xd gives an N-grading on R.
(b)(b) Let R = A[X1, . . . , Xn]. Discuss: the decomposition

Rd =
∑

d1+···+dn=d

A ·Xd1
1 · · ·Xdm

m

gives an N-grading onR. What is the homogeneous decomposition of f = X3
1 + 2X1X2 −X2

3 + 3?
(c)(c) Let R = AJXK. Explain why Rn = A ·Xn does not give an N-grading on R.

(a)(a) Agree.
(b)(b) Agree. f3 = X3

1 , f2 = 2x1x2 − x23, f0 = 3.
(c)(c) An element must be a finite sum of homogeneous elements.

(3)(3) Weighted gradings on polynomial rings: Let A be a ring, R = A[X1, . . . , Xn] and a1, . . . , am ∈ N.
(a)(a) Discuss: Rn =

∑
d1a1+···+dmam=n

A ·Xd1
1 · · ·Xdm

m gives an N-grading ofRwhere the degree ofXi is ai.

(b)(b) Can you find a1, a2, a3 such that X2
1 +X3

2 +X5
3 is homogeneous? Of what degree?

(a)(a) Yes. It is the truth.
(b)(b) a1 = 15, a2 = 10, a3 = 6 makes the element degree 30.

(4)(4) The fine grading on polynomial rings: Let A be a ring and R = A[X1, . . . , Xn]. Discuss why

Rd = A ·Xd for d = (d1, . . . , dm) ∈ Nn, where Xd := Xd1
1 · · ·Xdm

m

yields an Nm-grading on R. What are the homogeneous elements?

Yes, every polynomial is a sum of monomials with coefficients in a unique way, and the ex-
ponent vectors add when we multiply. The homogeneous elements are monomials with coeffi-
cients.

(5) More basics with graded rings. Let R be N-graded.
(a) Show2 that if e ∈ R is idempotent, then e is homogeneous of degree zero. In particular, 1 is

homogeneous of degree zero.
(b) Show that R0 is a subring of R, and each Rn is an R0-module.
(c) Show that if I is homogeneous, thenR/I is also N-graded where (R/I)n consists of the classes

of homogeneous elements of R of degree n.
(d) Show that I is homogeneous if and only if I is generated by homogeneous elements.
(e) Suppose that φ : R → S is a homomorphism of K-algebras, and that R and S are N-graded

with K contained in R0 and S0. Show that φ is graded if φ preserves degrees for all of the
elements in some homogeneous generating set of R.

(a) Suppose otherwise; then we can write e = e0 + ed +X with e0 the degree zero component
(a priori possibly zero), ed 6= 0 the lowest positive degree component, and X a sum of
higher degree terms. Then e2 = e yields e20 + 2e0ed + higher degree terms = e0 + ed +
higher degree terms, and equating terms of the same degree, e20 = e0 and 2e0ed = ed.
Multiplying the latter by e0 and using the first gives 2e0ed = e0ed, so e0ed = 0, so ed = 0.
This is a contradiction, so we must have e = e0 is homogeneous of degree zero.

2Hint: If not, write e = e0 + ed +X where e0 has degree zero and ed is the lowest nonzero positive degree component. Apply
uniqueness of homogeneous decomposition to e2 = e and show that 2e0ed = e0ed. . .



(b) From the above, 1 ∈ R0; we also know that R0 is closed under ± and ×, so it is a subring.
For r ∈ R0 and s ∈ Rn, rs ∈ Rn, and all the other module axioms follows from the ring
axioms in R.

(c) We need to show that R/I has a unique expression as a sum of elements in distinct (R/I)n
pieces. Let r ∈ R/I , and write r =

∑
i rdi as a sum of homogeneous components. Then

r =
∑

i rdi gives existence. For uniqueness, suppose that 0 =
∑

i

∑
i rdi with rdi ∈ Rdi

and di distinct. This just means that
∑

i rdi ∈ I , and by definition of homogeneous ideal,
we must have rdi ∈ I , so rdi=0. This is the required uniqueness statement.

(d) (⇒) Suppose that I is homogeneous, and let S be a generating set for I . We claim that the
set of homogeneous components S ′ of elements of S is a generating set for I . Indeed, each
such component is in I , so (S ′) ⊆ I and since each generator is a linear combination of said
components, we have I = (S) ⊆ (S ′), so (S ′) = I . (⇐) Suppose that I is generated by
a set S of homogeneous elements. Then given f ∈ I , we can write f =

∑
i risi for some

si ∈ S of degree di. Write each ri as a sum of homogeneous elements ri =
∑

j ri,j with
deg(ri,j) = j. Then f =

∑
i risi =

∑
i

∑
j ri,jsi. Then the homogeneous components of f

are
∑

i,j:j+di=t
ri,jsi, which lie in I .

(e) Any homogeneous element can be written as a polynomial expression in the generators:
r =

∑
i kif

d1
1 · · · fdtt . Each summand on the right hand side is homogeneous, so taking

the homogeneous component of degree equal to that of r, we can assume that each term
in the right hand side had degree equal to that of r. Then φ(r) = φ

(∑
i kif

d1
1 · · · fdtt

)
=∑

i kiφ(f1)
d1 · · ·φ(ft)dt . But since deg(fi) = deg(φ(fi)) the right hand side has the same

degree as that on the previous formula, so deg(φ(r)) = deg(r).

(6) Semigroup rings: Let S be a subsemigroup of Nn with operation + and identity (0, . . . , 0). The
semigroup ring of S is

K[S] :=
∑
α∈S

KXα ⊆ R, where Xα := Xα1
1 · · ·Xαn

n .

(a) Show that K[S] is a K-subalgebra that is a graded subring of R in the fine grading.
(b) Let S = 〈4, 7, 9〉 ⊆ N. Draw a picture of S. What is K[S]?
(c) Find a semigroup S ⊆ N2 such that K[S] is Noetherian, and another such that K[S] is not

Noetherian. Draw pictures of these semigroups.
(d) Show that every K-subalgebra that is a graded subring of R in the fine grading is of the form

K[S] for some S.

(7) Homogeneous elements: Let R be an N-graded ring.
(a) Show that R is a domain if and only if for all homogeneous elements x, y, xy = 0 implies

x = 0 or y = 0.
(b) Show that the radical of a homogeneous ideal is homogeneous.

(8) In the setting of the definition of “ring of invariants” suppose that each g ∈ G acts as a graded
homomorphism. Show that RG is an N-graded K-subalgebra of R.



§3.12: GRADED MODULES

DEFINITION: Let R be an N-graded ring with graded pieces Ri. A Z-grading on an R-module M is
• a decomposition of M as additive groups M =

⊕
e∈ZMe

• such that r ∈ Rd and m ∈Me implies rm ∈Md+e.
An Z-graded module is a module with a Z-grading. As with rings, we have the notions of homo-
geneous elements of M , the degree of a homogeneous element, homogeneous decomposition of an
arbitrary element of M . A homomorphism φ :M → N between graded modules is degree-preserving
if φ(Me) ⊆ Ne.

GRADED NAK 1: Let R be an N-graded ring, and R+ be the ideal generated by the homogeneous
elements of positive degree. Let M be a Z-graded module. Suppose that M�0 = 0; that is, there is
some n ∈ Z such that Mt = 0 for t ≤ n. Then M = R+M implies M = 0.

GRADED NAK 2: Let R be an N-graded ring and M be a Z-graded module with M�0 = 0. Let N be
a graded submodule of M . Then M = N +R+M if and only if M = N .

GRADED NAK 3: Let R be an N-graded ring and M be a Z-graded module with M�0 = 0. Then a
set of homogeneous elements S ⊆M generates M if and only if the image of S in M/R+M generates
M/R+M as a module over R0

∼= R/R+.

DEFINITION: Let R be an N-graded ring with R0 = K a field. Let M be a a Z-graded module with
M�0 = 0. A set S of homogeneous elements of M is a minimal generating set for M if the image of
S in M/R+M is an K-vector space basis.

(1)(1) Warmup with minimal generating sets.
(a)(a) Note that the definition of “minimal generating set” does not say that it is a generating set. Use

Graded NAK 3 to explain why it is!
(b)(b) Let K be a field and S = K[X, Y ]. Verify that {X2, XY, Y 2} is a minimal generating set of

the ideal I it generates in S.
(c)(c) Let K be a field. Find a minimal generating set of S = K[X, Y ] as a module over the

K-subalgebra R = K[X + Y,XY ].

(a)(a) A basis is a generating set; it is then the (⇐) of Graded NAK 3.
(b)(b) We need to show that the images of X2, XY, Y 2 form a basis for I/R+I; write lowercase

for images in this quotient. To see that they span, take F ∈ I , so F = AX2+BXY +CY 2

forA,B,C ∈ R; then going moduloR+ we have f = ax2+bxy+cy2, so x2, xy, y2 span the
quotient. For linear independence, ax2+bxy+cy2 = 0 impliesAX2+BXY +CY 2 ∈ R+I ,
and by comparing degrees,A,B,C have bottom degree one, hence are inR+, so a, b, c = 0.
Alternatively, note that I consists of all polynomials of bottom degree at least two, andR+I
consists of all polynomials of bottom degree at least three. Then the quotient is isomorphic
as a vector space to the collection of polynomials of degree two, and X2, XY, Y 2 is indeed
a basis.

(c)(c) We compute S/R+S = K[X, Y ]/(X + Y,XY ) ∼= K[Y ]/(−Y 2) ∼= K[Y ]/(Y 2), so the
classes of 1, Y generate. Thus {1, Y } forms a minimal generating set.

(2)(2) Proofs of graded NAKs:
(a)(a) Prove Graded NAK 1.



(b)(b) Use Graded NAK 1 to prove Graded NAK 2.
(c)(c) Use Graded NAK 2 to prove Graded NAK 3.

(a)(a) Suppose that M 6= 0. Take a nonzero homogeneous element m of minimal degree d in M ,
which exists by the hypothesis. Then since m ∈ R+M , we can write r =

∑
i rimi with

ri ∈ R+, so the bottom degree of ri is at least one. Thus, we can take the top degree of mi

to be < d. But then each mi = 0, so m = 0, a contradiction.
(b)(b) The (⇐) direction is clear. For the other, we can apply Graded NAK 1 to M/N since it is

graded and its degrees are bounded below. We have M
N

= N+R+M
N

= R+
M
N

so M/N = 0;
i.e., M = N .

(c)(c) Apply Graded NAK 2 to the submodule N =
∑

s∈S Rs: to do so, we need to note that
a submodule generated by homogeneous elements is a graded submodule, which follows
along similar lines to the corresponding statement we showed for ideals.

(3)(3) The hypotheses:
(a)(a) Examine your proofs from the previous problem and verify that one direction (each) of Graded

NAK 2 and Graded NAK 3 hold without assuming that R or M is graded.
(b)(b) Let K be a field and R = K[X] with the standard grading. Let M = K[X]/(X − 1). Analyze

the hypotheses and conclusion of Graded NAK 1 for this example.
(c)(c) Let K be a field and R = K[X] with the standard grading. Let M = K[X,X−1]. Analyze the

hypotheses and conclusion of Graded NAK 1 for this example.
(d)(d) Find counterexamples to Graded NAK 3 with M is not graded or not bounded below in degree.

(a)(a) The (⇐) direction of Graded NAK 2 and the (⇒) direction of Graded NAK 3 hold without
assuming that R or M is graded.

(b)(b) M is not a graded module; any element is of the form λ for λ ∈ K; if such an element was
homogeneous, then

deg(λ) = deg(Xλ) = deg(X) + deg(λ) = 1 + deg(λ),

a contradiction. We also have M = (X)M = R+M .
(c)(c) M is graded, but not bounded below. We also have M = (X)M = R+M .
(d)(d) For a cheap example, take either of the previous with S = ∅.

(4) Minimal generating sets: Let R be an N-graded ring with R0 = K a field. Let M be a a Z-graded
module with M�0 = 0.
(a) Explain why every minimal generating set for M has the same cardinality.
(b) Explain why every homogeneous generating set for M contains a minimal generating set for

M . Moreover, explain why any generating set (homogeneous or not) has cardinality at least
that of a minimal generating set.

(c) Explain why “minimal generating set” is equivalent to “homogeneous generating set such that
no proper subset generates”.

(d) Give an example of a finitely generated module N over K[X, Y ] and two generating set S1, S2

for N such that no proper subset of Si generates N , but |S1| 6= |S2|. Compare to the statements
above.

(a) Because all bases of a vector space do.
(b) If S is a homogeneous generating set for M , then the images span M/R+M , so the images

must contain a basis; the elements of S that map to a basis form a minimal generating set.
For a general generating set, its images still contain a basis of M/R+M .



(c) This just follows from the fact that a basis of a vector space is the same as a minimal
spanning set.

(d) One could take the two generating sets of the ideal I = ((X − 1)Y,XY ) = (Y ).

(5) Let R be an N-graded ring with R0 = K a field. Suppose that Rred = R/
√
0 is a domain, and

that f ∈ R is a homogeneous nonnilpotent element of positive degree. Show that R/(f) is reduced
implies that R is a reduced, and hence a domain.

(6) Let r ∈
√
0 be a homogeneous nilpotent element. Then for some e ∈ N we have re = 0 ∈ (f),

and since R/(f) is reduced, r ∈ (f). Thus, we can write r = fs for some homogeneous s. But
r ∈
√
0, f /∈

√
0, and

√
0 prime implies that s ∈

√
0. This implies that

√
0 = f

√
0 ⊆ R+

√
0,

so
√
0 = 0; i.e., R is reduced.



§3.13: FINITENESS THEOREM FOR INVARIANT RINGS

HILBERT’S FINITENESS THEOREM: LetK be a field of characteristic zero, andR = K[X1, . . . , Xn] be
a polynomial ring. Let G be a finite group acting on R by degree-preserving K-algebra automorphisms.
Then the invariant ring RG is algebra-finite over K.

THEOREM: Let R be an N-graded ring. Then R is Noetherian if and only if R0 is Noetherian and R is
algebra-finite over R0.

DEFINITION: Let R ⊆ S be an inclusion of rings. We say that R is a direct summand of S if there is
an R-module homomorphism π : S → R such that π|R = 1R.

PROPOSITION: A direct summand of a Noetherian ring is Noetherian.

LEMMA: Let R be a polynomial ring over a field K. If G is a group acting on R by degree-preserving
K-algebra automorphisms, then

(1) RG is an N-graded K-subalgebra of R with (RG)0 = K.
(2) If in addition, G is finite, and |G| is invertible in K, then RG is a direct summand of R.

(1) Use the Lemma, Proposition, and Theorem to deduce Hilbert’s finiteness Theorem.

By the Lemma, RG is a direct summand of R. Since R is Noetherian, so is RG. By the Lemma,
RG is graded with (RG)0 = K. Then, by the Theorem, since RG is Noetherian, and RG is
algebra-finite over (RG)0, and it remains to note that (RG)0 = K.

(2) Proof of Theorem:
(a) Explain the direction (⇐).
(b) Show that R Noetherian implies R0 is Noetherian.
(c) Let f1, . . . , ft be a homogeneous generating set for R+, the ideal generated by positive degree

elements of R. Show1 by (strong) induction on d that every element of Rd is contained in
R0[f1, . . . , ft].

(d) Conclude the proof of the Theorem.

(a) This follows from the Hilbert Basis Theorem.
(b) R0

∼= R/R+.
(c) For d = 0 there is nothing to show. For d > 0, take h ∈ Rd. Since Rd ⊆ R+, write

h =
∑

i rifi for some ri ∈ R. If we replace ri by r′i its homogeneous component of degree
d− deg(fi), we claim that h =

∑
i r

′
ifi. Indeed, writing each ri as a sum of homogeneous

components and multiplying out, all of the other terms are homogeneous of some other
degree, so the claim follows by uniqueness of homogeneous decomposition. So suppose ri
is homogeneous of degree d−deg(fi). By induction, we have ri ∈ R0[f1, . . . , ft]. But then
this plus h =

∑
i rifi show h ∈ R0[f1, . . . , ft].

(d) If R is Noetherian then R+ is finitely generated as an ideal; since R+ is homogeneous, it is
generated by the (fintely many) components of these generators so has a finite homogeneous
generating set, and a such generating set of R+ generates R as an algebra over R0 by the
previous part.

1Hint: Start by writing h ∈ Rd as h =
∑

i rifi with d = deg(ri) + deg(fi) for all i.



(3) Proof of Proposition:
(a) Show that if R is a direct summand of S, and I is an ideal of R, then IS ∩R = I .
(b) Complete the proof of the proposition.

(a) We always have I ⊆ IS ∩ R. Let f ∈ IS ∩ R, so f =
∑

i aisi with ai ∈ I , si ∈ S.
Apply the map π. Since f ∈ R, we have π(f) = f . Since π is R-linear, we also have
π (

∑
i aisi) =

∑
i aiπ(si), with π(si) ∈ R. But this is an element of I , so f ∈ I .

(b) Let I1 ⊆ I2 ⊆ I3 ⊆ · · · be a chain of ideals in R. Then I1S ⊆ I2S ⊆ I3S ⊆ · · · is a
chain of ideals in S, which necessarily stabilizes. But the chain (I1S ∩ R) ⊆ (I2S ∩ R) ⊆
(I3S ∩R) ⊆ · · · stabilizes, but this is our original chain!

(4) Proof of Lemma part (2): Consider r 7→ 1
|G|

∑
g∈G g · r.

One checks directly that this map is RG-linear and restricts to the identity on RG.

(5) Show that a direct summand of a normal ring is normal.

(6) Let S3 denote the symmetric group on 3 letters, and let S3 act on R = C[X1, X2, X3] by permuting
variables; i.e., σ is the C-algebra homomorphism given by σ · Xi = Xσ(i). Find a C-algebra
generating set for RS3 . What about replacing 3 by n?



§3.14: REES RINGS AND THE ARTIN-REES LEMMA

DEFINITION: Let R be a ring and I be an ideal. The Rees ring of I is the N-graded R-algebra

R[IT ] :=
⊕
d≥0

IdT d = R⊕ IT ⊕ I2T 2 ⊕ · · ·

with multiplication determined by (aT d)(bT e) = abT d+e for a ∈ Id, b ∈ Ie (and extended by the
distributive law for nonhomogeneous elements). Here In means the nth power of the ideal I in
R, and t is an indeterminate. Equivalently, R[IT ] is the R-subalgebra of the polynomial ring R[T ]
generated by IT , with R[T ] is given the standard grading R[T ]d = R · T d.

DEFINITION: Let R be a ring and I be an ideal. The associated graded ring of I is the N-graded
ring

grI(R) :=
⊕
d≥0

(Id/Id+1)T d = R/I ⊕ (I/I2)T ⊕ (I2/I3)T 2 ⊕ · · ·

with multiplication determined by (a+ Id+1T d)(b+ Ie+1T e) = ab+ Id+e+1 T d+e for a ∈ Id, b ∈ Ie

(and extended by the distributive law). For an element r ∈ R, its initial form in grI(R) is

r∗ :=

{
(r + Id+1)T d if r ∈ Id r Id+1

0 if r ∈
⋂

n≥0 I
n.

ARTIN-REES LEMMA: Let R be a Noetherian ring, I an ideal of R, M a finitely generated mod-
ule, and N ⊆ M a submodule. Then there is a constant1 c ≥ 0 such that for all n ≥ c, we
have InM ∩N ⊆ In−cN .

(1)(1) Warmup with Rees rings:
(a)(a) Let R be a ring and I be an ideal. Show that if I = (a1, . . . , an), then R[It] = R[a1t, . . . , ant].
(b)(b) Let K be a field, R = K[X, Y ] and I = (X, Y ). Find K-algebra generators for R[It], and

find a relation on these generators.

(a)(a) This follows from the Theorem we showed last time: given a (finite, though this isn’t
necessary) set of homogeneous elements that generate R+ as an ideal, these elements
generate R as an R0-algebra.

(b)(b) The elements X, Y,XT, Y T generate. A relation is X(Y T )−Y (XT ), or X1X4−X2X3

in dummy variables. In fact, this is a defining set of relations.

(2)(2) Warmup with associated graded rings:
(a)(a) Convince yourself that the multiplication given in the definition of grI(R) is well-defined.

After doing this, do not use coset notation for elements of grI(R) and instead write a typical
homogeneous element as something like r T d.

(b)(b) Let K be a field, R = K[X, Y ], and m = (X, Y ). Show that grm(R)d ∼= Rd as K-vector
spaces, and construct a ring isomorphism grm(R) ∼= R.

(c)(c) For the same R, show that the map R → grm(R) given by r 7→ r∗ is not a ring homomor-
phism.

(d)(d) Let K be a field, R = KJX, Y K, and m = (X, Y ). Show2 that grm(R) ∼= K[X, Y ].

1The constant c depends on I,M, and N but works for all t.
2Yes, the brackets changed. This is not a typo!



(e)(e) What happens in (b) and (d) if we have n variables instead of 2?

(a)(a) Let a ∈ Id and b ∈ Ie. Then given a′ ∈ Id+1 and b′ ∈ Ie+1, we have (a + a′)(b + b′) =
ab+ a′b+ ab′ + a′b′ ∈ ab+ Id+e+1.

(b)(b) Note that grI(R)d is exactly the vector space fT d with f ∈ Rd. So “ignoring” T is an
isomorphism of vector spaces. One checks directly that it is compatible with multiplica-
tion by reducing to the case of homogeneous elements.

(c)(c) For example, if f = X − 1 and g = 1, then f ∗ = −1, g∗ = 1, but (f + g)∗ = X .
(d)(d) Note that grI(R)d is again just the vector space fT d with f ∈ Rd, and multiplication is

the same as in the polynomial case.
(e)(e) The same thing.

(3)(3) Consider the special case of Artin-Rees where M = R, and I = (f) and N = (g).
(a)(a) What does Artin-Rees say in this setting? Express your answer in terms of “divides”.
(b)(b) Take R = Z. Does c = 0 “work” for every f, g ∈ Z? Can you find a sequence of examples

requiring arbitrarily large values of c?

(a)(a) There is some c such that fn|h and g|h implies (fn−cg)|h.
(b)(b) Take f = 2 and g = 2m. Then 2n|h and 2m|h implies 2max{m,n}|h. Then fn−cg =

2m+n−c. To guarantee this to divide h, we must have c ≥ m.

(4) Proof of Artin-Rees: Let R be a Noetherian ring, and I be an ideal.
(a) Explain why R[It] is a Noetherian ring.
(b) Let M =

∑
i Rmi be a finitely generated R-module. SetM :=

⊕
n≥0 I

nMtn. Show that
this is a graded R[It]-module, and thatM =

∑
i R[It] · mi, where in the last equality we

consider mi as the element mit
0 ∈M0.

(c) Given a submodule N of M , set N :=
⊕

n≥0(I
nM ∩N)tn ⊆M. Show that N is a graded

R[It]-submodule ofM.
(d) Show that there exist n1, . . . , nk ∈ N and c1, . . . , ck ≥ 0 such that N =

∑
j R[It] · njt

cj .
(e) Show that c := max{cj} satisfies the conclusion of the Artin-Rees Lemma.

(a) Since I is finitely generated, it is a finitely generated algebra over a Noetherian ring.
(b) First, we check that this is an R[It]-module. It is clearly an additive group. To check

that it is closed under the R[It]-action and that this yields a graded action, it suffices to
check that R[It]d ·Me ⊆Md+e. To see it, take rtd with r ∈ Id and mte with m ∈ IeM ;
then the action yields rmtd+e and rm ∈ Id(IeM) = Id+eM , so rmtd+e ∈ Md+e, as
required.
Clearly mi ∈ M, so

∑
i R[It] ·mi ⊆M. Now we check that this generates. It suffices

to check that any homogeneous element can be generated by this generating set, so take
some mtd ∈ Md with m ∈ IdM . This means we can write m =

∑
j ajuj with aj ∈ Id

and uj ∈M . Then we can write uj =
∑

bijmi for some bij ∈ R, yielding an expression
m =

∑
i cimi with ci ∈ Id. Thus, m =

∑
i(cit

d)mi ∈ R[It] ·mi.
(c) It suffices to check that R[It]d · Ne ⊆ Nd+e. Take rtd with r ∈ Id and nte with

n ∈ (IeM ∩N). Then rn ∈ Id(IeM ∩ N), so rn ∈ IdIeM = Id+eM and rn ∈
IdN ⊆ N , and hence rn ∈ Id+eM ∩N . Thus (rtd)(nte) ∈ Nd+e.



(d) Since R[It] is Noetherian andM is finitely generated, so is N . Since it is graded and
finitely generated, it can be generated by finitely many homogeneous elements. The
statement is just naming them.

(e) Let c = max{cj}. Take u ∈ InM ∩ N . Then utn ∈ Nn =
∑

j R[It] · njt
cj .

We can then express u as a homogeneous linear combination of these generators, so
utn =

∑
j(rjt

n−cj)(njt
cj). Since n− cj ≥ n− c, we have rj ∈ In−c, and each nj ∈ N ,

so u =
∑

j rjnj ∈ In−cN . Moving over the c, we obtain the statement.

(5) Presentations of associated graded rings: Let R be a ring and I, J be ideals. Set inI(J) to be the
ideal of grI(R) generated by {a∗ | a ∈ J}.
(a) Show that grI(R/J) ∼= grI(R)/in(J).
(b) If J = (f) is a principal ideal, show that inI(J) = (f ∗).
(c) Is inI((f1, . . . , ft)) = (f ∗1 , . . . , f

∗
t ) in general?

(d) Compute gr(x,y,z)(
KJX,Y,ZK

(X2+XY+Y 3+Z7)
).

(6) Properties of associated graded rings: Let R be a ring and I be an ideal such that
⋂

n≥0 I
n = 0.

(a) Show that if grI(R) is a domain, then so is R.
(b) Show that if grI(R) is reduced, then so is R.
(c) What about the converses of these statements?

(7) Show that for the ideal I = (X, Y )2 in R = K[X, Y ], the Rees ring R[It] has defining relations
of degree greater than one.



§4.15: NOETHER NORMALIZATION AND ZARISKI’S LEMMA

NOETHER NORMALIZATION: Let K be a field, and R be a finitely-generated K-algebra.
Then there exists a finite1 set of elements f1, . . . , fm ∈ R that are algebraically independent
over K such that K[f1, . . . , fm] ⊆ R is module-finite; equivalently, there is a module-finite
injectiveK-algebra map from a polynomial ringK[X1, . . . , Xm] ↪→ R. Such a ring S is called
a Noether normalization for R.

LEMMA: Let A be a ring, and F ∈ R := A[X1, . . . , Xn] be a nonzero polynomial. Then there
exists an A-algebra automorphism φ of R such that φ(F ), viewed as a polynomial in Xn with
coefficients in A[X1, . . . , Xn−1], has top degree term aX t

n for some a ∈ Ar 0 and t ≥ 0.
• If A = K is an infinite field, one can take φ(Xn) = Xn and φ(Xi) = Xi + λiXn for

some λ1, . . . , λn−1 ∈ K.
• In general, if the top degree of F (with respect to the standard grading) is D, one can

take φ(Xn) = Xn and φ(Xi) = Xi +XDn−i

n for i < n.

ZARISKI’S LEMMA: An algebra-finite extension of fields is module-finite.

USEFUL VARIATIONS ON NOETHER NORMALIZATION:
• NN FOR DOMAINS: Let A ⊆ R be an algebra-finite inclusion of domains2. Then there

exists a ∈ A r 0 and f1, . . . , fm ∈ R[1/a] that are algebraically independent over
A[1/a] such that A[1/a][f1, . . . , fm] ⊆ R[1/a] is module-finite.
• GRADED NN: Let K be an infinite field, and R be a standard graded K-algebra.

Then there exist algebraically independent elements L1, . . . , Lm ∈ R1 such that
K[L1, . . . , Lm] ⊆ R is module-finite.
• NN FOR POWER SERIES: LetK be an infinite field, andR = KJX1, . . . , XnK/I . Then

there exists a module-finite injection KJY1, . . . , YmK ↪→ R for some power series ring
in m variables.

(1)(1) Examples of Noether normalizations: Let K be a field.

(a)(a) Show that K[x, y] is a Noether normalization of R =
K[X, Y, Z]

(X3 + Y 3 + Z3)
, where x, y

are the classes of X and Y in R, respectively.

(b)(b) Show that K[x] is not a Noether normalization of R =
K[X, Y ]

(XY )
. Then show that

K[x+ y] ⊆ R is a Noether normalization.
(c)(c) Show that K[X4, Y 4] is a Noether normalization for R = K[X4, X3Y,XY 3, Y 4].

(a)(a) From the equation z3 + x3 + y3 = 0, we have K[x, y] ⊆ R is integral, and since
z generates as an algebra, hence module-finite. We need to check that x, y are
algebraically independent in R. Suppose that p(x, y) = 0 in R, so p(X, Y ) ∈

1Possibly empty!
2The assumption that R is a domain is actually not necessary, but can’t quite state the general statement yet. We
assume that R is a domain so that there is fraction field of R in which to take R[1/a].



(X3 + Y 3 + Z3) in K[X, Y, Z]. By considering K[X, Y, Z] = K[X, Y ][Z] as
polynomials in Z, the Z-degree of such a p, which forces p = 0. Thus x, y are
algebraically independent.

(b)(b) y is not integral over K[x]: this would imply Y n + a1(X)Y n−1 + · · · an(X) =
XY b(X, Y ) in K[X, Y ], but no monomial from any term can cancel Y n. Alterna-
tively, if the inclusion is module-finite, go mod x to getK ⊆ K[X, Y ]/(XY,X) =
K[Y ] module-finite, which it isn’t.

(c)(c) It is easy to check that X4, Y 4 are algebraically independent, and (X3Y )4 =
(X4)3Y 4, (XY 3)4 = X4(Y 4)3 give integral dependence relations for the alge-
bra generators.

(2)(2) Use Noether Normalization3 to prove Zariski’s Lemma.

Let K ⊆ L be an algebra-finite extension of fields. Take a NN of L: say
K ⊆ K[`1, . . . , `t] ⊆ L, with `i algebraically independent and R := K[`1, . . . , `t] ⊆ L
module-finite and a fortiori integral. From the Integral Extensions worksheet, since L
and R are domains, the extension is integral, and L is a field, we know that R is a field.
This means that t = 0, so K ⊆ L is module-finite.

(3)(3) Proof of Noether Normalization (using the Lemma): Proceed by induction on the number
of generators of R as a K-algebra; write R = K[r1, . . . , rn].
(a)(a) Deal with the base case n = 0.
(b)(b) For the inductive step, first do the case that r1, . . . , rn are algebraically independent

over K.
(c)(c) Let α : K[X1, . . . , Xn]→ R be the K-algebra homomorphism such that α(Xi) = ri,

and let φ be aK-algebra automorphism ofK[X1, . . . , Xn]. Let r′i = α(φ(Xi)) for each
i. Explain4 why R = K[r′1, . . . , r

′
n], and for any K-algebra relation F on r1, . . . , rn,

the polynomial φ−1(F ) is a K-algebra relation on r′1, . . . , r
′
n.

(d)(d) Use the Lemma to find a K-subalgebra R′ of R with n − 1 generators such that the
inclusion R′ ⊆ R is module-finite.

(e)(e) Conclude the proof.

(a)(a) This means that R is a quotient of K, but K is a field, so R = K; the identity map
is module-finite.

(b)(b) If we have an algebraically independent set of generators for R, then R works: the
identity map is module-finite.

(c)(c) First we claim that R = K[r′1, . . . , r
′
n]: indeed, the map α′ = α ◦ φ is the K-

algebra map that sends Xi to r′i, and since α and φ are surjective, α′ is surjective,
verifying the claim. The relations on the r′i are of the elements of the kernel of α′;
if F is a relation on the originals, then α(F ) = 0, so α′(φ−1(F )) = 0 as well.

3and a suitable fact about integral extensions. . .
4Say α′ is the K-algebra map given by α′(Xi) = r′i. Observe that α′ = α ◦ φ. Why is this surjective?



(d)(d) Take a map φ as in the Lemma, and n generators r1, . . . , rn. Set r′i = φ−1(ri). By
the previous part, these generate, and there is a relation on these that is monic in
Xn, so R′ = K[r′1, . . . , r

′
n−1] ⊆ R is module-finite.

(e)(e) Apply IH to R′ to get K[f1, . . . , ft] ⊆ R′ with fi alg indep’t and the inclusion
module-finite. Then K[f1, . . . , ft] is a Noether normalization.

(4) Proof of the “general case” of the Lemma:
(a) Where do “base D expansions” fit in this picture?
(b) Consider the automorphism φ from the general case of the Lemma. Show that for a

monomial, we have φ(aXd1
1 · · ·Xdn

n ) is a polynomial with unique highest degree term
aXd1Dn−1+d2Dn−2+···+dn

n .
(c) Can two monomials µ, ν in F , have φ(µ) and φ(ν) with the same highest degree term?
(d) Complete the proof.

(5) Variations on NN.
(a) Adapt the proof of NN to show Graded NN.
(b) Adapt the proof of NN to show NN for domains.
(c) Adapt the proof of NN to show NN for power series.



§4.16: NULLSTELLENSATZ

DEFINITION: Let K be a field and R = K[X1, . . . , Xn]. For a set of polynomials S ⊆ R, we
define the zero-set of solution set of S to be

Z(S) := {(a1, . . . , an) ∈ Kn | F (a1, . . . , an) = 0 for all F ∈ S}.

NULLSTELLENSATZ: Let K be an algebraically closed field, and R = K[X1, . . . , Xn] be a
polynomial ring. Let I ⊆ R be an ideal. Then Z(I) = ∅ if and only if I = R is the unit ideal.
Put another way, a set S of multivariate polynomials has a common zero unless there is a “certifi-
cate of infeasibility” consisting of f1, . . . , ft ∈ S and r1, . . . , rt ∈ R such that

∑
i risi = 1.

PROPOSITION: Let K be an algebraically closed field, and R = K[X1, . . . , Xn] be a polynomial
ring. Every maximal ideal of R is of the form mα = (X1 − a1, . . . , Xn − an) for some point
α = (a1 . . . , an) ∈ Kn.

(1)(1) Draw the “real parts” of Z(X2 + Y 2 − 1) and of Z(XY,XZ).

(2)(2) Explain why the Nullstellensatz is definitely false if K is assumed to not be algebraically
closed.

To not be algebraically closed means that there is a nonconstant polynomial in one vari-
able that has empty solution set; such a polynomial generates a proper ideal.

(3)(3) Basics of Z: Let R = K[X1, . . . , Xn] be a polynomial ring.
(a)(a) Explain why, for any system of polynomial equations F1 = G1, . . . , Fm = Gm, the

solution set can be written in the form Z(S) for some set S.
(b)(b) Let S ⊆ T be two sets of polynomials. Show that Z(S) ⊇ Z(T ).
(c)(c) Let I = (S). Show thatZ(I) = Z(S). Thus, every solution set system of any polynomial

equations can be written as Z of some ideal.
(d)(d) Explain the following: every system of equations over a polynomial ring is equivalent to

a finite system of equations.

(a)(a) Take S = {F1 −G1, . . . , Fm −Gm}.
(b)(b) α ∈ Z(T ) implies F (α) = 0 for all F ∈ T implies F (α) = 0 for all F ∈ S implies

α ∈ Z(S).



(c)(c) Since S ⊆ I we have Z(S) ⊇ Z(I). On the other hand, if α ∈ Z(S) and F ∈ I ,
then F =

∑
i risi with si ∈ S, and F (α) =

∑
i ri(α)si(α) =

∑
i ri(α) · 0 = 0. Thus

α ∈ Z(I).
(d)(d) We can write any system as Z(I). By the Hilbert Basis Theorem, I = (f1, . . . , fm),

and Z(I) = Z(f1, . . . , fm), which is equivalent to the system f1 = 0, . . . , fm = 0.

(4)(4) Proof of Proposition and Nullstellensatz: Let K be an algebraically closed field, and
R = K[X1, . . . , Xn] be a polynomial ring.
(a)(a) Use Zariski’s Lemma to show that for every maximal ideal m ⊆ R, we have R/m ∼= K.
(b)(b) Reuse some old work to deduce the Proposition.
(c)(c) Deduce the Nullstellensatz from the Proposition.
(d)(d) Convince yourself that the “certificate of infeasibility” version follows from the other

one.

(a)(a) The ring R/m is a finitely generated K-algebra and a field, so K ⊆ R/m is module-
finite by Zariski’s Lemma. Since K is algebraically closed, we must have K ∼= R/m.

(b)(b) From worksheet #2, we know that any maximal ideal in a polynomial ring with
R/m ∼= K is of the form mα for some α.

(c)(c) If I is a proper ideal, then I ⊆ m for some maximal ideal m, and from above I ⊆ mα

for some α. Then Z(I) ⊇ Z(mα) = {α} is nonempty!
(d)(d) This is just unpackaging what it means for (S) to be the unit ideal.

(5)(5) Given a system of polynomial equations and inequations

(?) F1 = 0, . . . , Fm = 0 G1 6= 0, . . . , G` 6= 0

come up with a system1 of equations (†) in one extra variable such that (?) has a solution
if and only if (†) has a solution. Thus every equation-and-inequation feasibility problem is
equivalent to a question of the form Z(I) ?

= ∅.

We can take F1 = 0, . . . , Fm = 0, G1G2 . . . G`Y − 1 = 0: a solution of this must consist
of a solution of (?) for the X’s and the inverse of the product of the Gi(X) for Y .

(6) Show that any system of multivariate polynomial equations (or equations and inequations)
over a field K has a solution in some extension field of L if and only if it has a solution
over K.

(7) Let K be a field and R = K[X1, . . . , Xn]. Let L ⊇ K and S = L[X1, . . . , Xn].
(a) Find some f that is irreducible in R but reducible in S for some choice of K ⊆ L.
(b) Show that ifK is algebraically closed and f ∈ R is irreducible, then it is irreducible in S.
(c) Show that if K is algebraically closed and I ⊆ R is prime, then IS is prime.

(8) Show that the statement of the Nullstellensatz holds for the ring of continuous functions from
[0, 1] to R.

1Hint: λ ∈ K is nonzero if and only if there is some µ such that λµ = 1.



§4.17: STRONG NULLSTELLENSATZ

STRONG NULLSTELLENSATZ: Let K be an algebraically closed field, and R = K[X1, . . . , Xn] be
a polynomial ring. Let I ⊆ R be an ideal and f ∈ R a polynomial. Then

f vanishes at every point of Z(I) if and only if f ∈
√
I .

DEFINITION: Let K be a field and R = K[X1, . . . , Xn]. A subvariety of Kn is a set of the form
Z(S) for some set of polynomials S ⊆ R; i.e., a solution set of some system of polynomial equations.

COROLLARY: Let K be an algebraically closed field. There is a bijection

{radical ideals in K[X1, . . . , Xn]} ←→ {subvarieties of Kn}.

(1)(1) Proof of Strong Nullstellensatz:
(a)(a) Show that Z(I) = Z(

√
I), and deduce the (⇐) direction.

(b)(b) Let Y be an extra indeterminate. Show that f vanishes on Z(I) implies that

Z
(
I + (Y f − 1)

)
= ∅ in Kn+1.

(c)(c) What does the Nullstellensatz have to say about that?
(d)(d) Apply the R-algebra homomorphism φ : R[Y ] → frac(R) given by φ(Y ) = 1

f
and clear

denominators.

(a)(a) Since I ⊆
√
I , we have Z(

√
I) ⊆ Z(I). On the other hand, if α ∈ Z(I) and fn ∈ I ,

then fn(α) = 0, so f(α) = 0, so α ∈ Z(
√
I). In particular, the (⇐) direction of the

statement holds.
(b)(b) If there was a solution (α, a), this would mean α ∈ Z(I) and af(α) − −1 = 0, so

f(α) 6= 0, contradicting that α ∈ Z(f).
(c)(c) We can write 1 =

∑
i ri(X, Y )gi(X)+ s(X, Y )(Y f(X)−1) for some ri, s ∈ R[Y ] and

gi ∈ I .
(d)(d) We get 1 =

∑
i ri(X, 1/f)gi(X) + s(X, 1/f)(1/f · f(X) − 1). The last term dies so

1 =
∑

i ri(X, 1/f)gi(X). We can clear denominators to get fn =
∑
r′i(X)gi(X) in R,

so fn ∈ I .

(2)(2) Strong Nullstellensatz warmup:
(a)(a) Consider the ideal I = (X2 + Y 2) ∈ R[X, Y ] and f = X . Discuss the hypotheses and

conclusion of Strong Nullstellensatz in this example.
(b)(b) Show that1 no power of F = X2 + Y 2 + Z2 is in the ideal

I = (X3 − Y 2Z, Y 7 −XZ3, 3X5 −XY Z − 2Z19) in the ring C[X, Y, Z].

(a)(a) Z(I) = {(0, 0)} and X vanishes along Z(I), but (X2 +Y 2) is prime and hence radical.
The conclusion of Strong Nullstellensatz fails. Of course, R is not algebraically closed.

(b)(b) F (1, 1, 1) = 3 6= 0 but (1, 1, 1) ∈ Z(I), since it is in the zero-set of each generator.

(3)(3) Prove the Corollary.

1Hint: You just need to find one point. One, one, one. . .



We have a map from radical ideals to subvarieities given by I 7→ Z(I). This is surjective by
definition and the first part of the proof of Strong Nullstellensatz. It is injective too: if I and
J are distinct radical ideals, without loss of generality there is some f ∈ J such that f /∈

√
I;

then f(α) 6= 0 for some α ∈ Z(I), so Z(I) 6⊆ Z(J).

(4)(4) Let R = C[T ] be a polynomial ring. In this problem, we will show that the ideal of C-algebraic
relations on the elements {T 2, T 3, T 4} is I = (X2

1 −X3, X
2
2 −X1X3).

(a)(a) Let φ : C[X1, X2, X3]→ C[T ] be the C-algebra map X1 7→ T 2, X2 7→ T 3, X3 7→ T 4. Show
that I ⊆ ker(φ).

(b)(b) Show thatZ(I) ⊆ {(λ2, λ3, λ4) ∈ C3 | λ ∈ C)} ⊆ Z(ker(φ)), and deduce that ker(φ) ⊆
√
I .

(c)(c) Show that I is prime2, and complete the proof.

(a)(a) The generators map to 0 under φ.
(b)(b) For the first containment, let (α, β, γ) ∈ Z(I). From the first equation, we can write

γ = α2. From the second, we have β2 = α3. If α = 0, we must have (0, 0, 0). Otherwise,
α has two square roots. Take λ to be one of these. Then α = λ2 and β2 = λ6. This
means β = ±λ3. If β = −λ3, replace λ by −λ; this does not change α = λ2 or γ = λ4.
So, we obtain λ such that (α, β, γ) = (λ2, λ3, λ4).
For the second, if F (X1, X2, X3) ∈ ker(φ), then F (T 2, T 3, T 4) = 0, so
F (λ2, λ3, λ4) = 0.

(c)(c) Using the first relation and an isomorphism theorem,
C[X1, X2, X3]/I ∼= C[X1, X2]/(X

2
2 −X3

1 ). The element X2
2 − X3

1 is irreducible by
Eisenstein’s criterion, so I is prime.

(5) Let K be an algebraically closed field and R = K

[
X11 X12

X21 X22

]
be a polynomial ring. Use the

Strong Nullstellensatz to show that any polynomial F (X11, X12, X21, X22) that vanishes on every

matrix of rank at most one is a multiple of det
[
X11 X12

X21 X22

]
.

(6) We say that a subvariety of Kn is irreducible if it cannot be written as a union of two proper
subvarities. Show that the bijection from the Corollary restricts to a bijection

{prime ideals in K[X1, . . . , Xn]} ←→ {irreducible subvarieties of Kn}.

Let I be a radical ideal. We need to show that Z(I) is irreducible if and only if I is prime.
Suppose that I is not prime, so one has f, g /∈ I with fg ∈ I . Since I is radical, f, g /∈

√
I ,

so Z(f),Z(g) 6⊇ Z(I). This means that Z(I + (f)) and Z(I + (g)) are proper subvarieties
of Z(I). But α ∈ Z(I) and fg ∈ I implies f(α)g(α) = 0 so f(α) = 0 or g(α) = 0, which
means Z(I) = Z(I + (f)) ∪ Z(I + (g)).

Conversely, suppose that Z(I) = Z(J1) ∪ Z(J2), with J1, J2 radical and not equal to I .
Since Z(I) ⊇ Z(Ji) we have Ji % I . We can take f ∈ J1 r J2 and g ∈ J2 r J1. Since
f(α) = 0 for all α ∈ Z(J1), g(α) = 0 for all α ∈ Z(J2), and Z(I) = Z(J1) ∪ Z(J2), we
have fg(α) = 0 for all α ∈ Z(I), so fg ∈ I , and I is not prime.

2Show C[X1, X2, X3]/I is a domain by simplifying the quotient.



(7) Use the Strong Nullstellensatz to show that, in a finitely generated algebra over an algebrically
closed field, every radical ideal can be written as an intersection of maximal ideals.



§4.18: SPECTRUM OF A RING

DEFINITION: Let R be a ring, and I ⊆ R an ideal of R.
• The spectrum of a ring R, denoted Spec(R), is the set of prime ideals of R.
• We set V (I) := {p ∈ Spec(R) | I ⊆ p}, the set of primes containing I .
• We set D(I) := {p ∈ Spec(R) | I 6⊆ p}, the set of primes not containing I .
• More generally, for any subset S ⊆ R, we define V (S) and D(S) analogously.

DEFINITION/PROPOSITION: The collection {V (I) | I an ideal ofR} is the collection of closed
subsets of a topology on R, called the Zariski topology; equivalently, the open sets are D(I)
for I an ideal of R.

DEFINITION: Let φ : R → S be a ring homomorphism. Then the induced map on Spec
corresponding to φ is the map φ∗ : Spec(S)→ Spec(R) given by φ∗(p) := φ−1(p).

LEMMA: Let p be a prime ideal. Let Iλ, J be ideals.
(1)

∑
λ Iλ ⊆ p⇐⇒ Iλ ⊆ p for all λ.

(2) IJ ⊆ p⇐⇒ I ⊆ p or J ⊆ p
(3) I ∩ J ⊆ p⇐⇒ I ⊆ p or J ⊆ p
(4) I ⊆ p⇐⇒

√
I ⊆ p

(1)(1) The spectrum of some reasonably small rings.
(a)(a) Let R = Z be the ring of integers.

(i)(i) What are the elements of Spec(R)? Be careful not to forget (0)!
(ii)(ii) Draw a picture Spec(R) (with · · · since you can’t list everything) with a line

going up from p to q if p ⊂ q.
(iii)(iii) Describe the sets V (I) and D(I) for any ideal I .

(b)(b) Same questions for R = K a field.
(c)(c) Same questions for the polynomial ring R = C[X].
(d)(d) Same questions1 for the power series ring R = KJXK for a field K.

(a)(a) The spectrum of Z is, as a poset:

(2) (3) (5) (7) (11) · · ·

(0)

The sets D((n)) are the whole space when n = 1, the empty set with n = 0,
and any complement of finite union of things in the top row otherwise. The sets
V ((n)) are the whole space when n = 0, the empty set with n = 1, and any finite
union of things in the top row otherwise.

(b)(b) The spectrum of a field is just {(0)}.

1Spoiler: The only primes are (0) and (X). To prove it, show/recall that any nonzero series f can be written as
f = Xnu for some unit u ∈ KJXK.



(c)(c) The spectrum of C[X] is, as a poset:

(X) (X − 1) (X −
√
2) (X − i) (X − π) · · ·

(0)

For an element f , V ((f)) corresponds to the irreducible factors of f . The sets
D((f)) are the whole space when f = 1, the empty set with f = 0, and any
complement of finite union of things in the top row otherwise. The sets V ((f))
are the whole space when f = 0, the empty set with f = 1, and any finite union
of things in the top row otherwise.

(d)(d)
(X)

(0)

The sets V are ∅, {(X)}, and {(0), (X)}. The sets D are ∅, {(0)}, and
{(0), (X)}.

(2)(2) More Spectra.
(a)(a) Let R = C[X, Y ] be a polynomial ring in two variables. Find some maximal ideals,

the zero ideal, and some primes that are neither. Draw a picture like the ones from the
previous problem to illustrate some containments between these.

(b)(b) Let R be a ring and I be an ideal. Use the Second Isomorphism Theorem to give a
natural bijection between Spec(R/I) and V (I).

(c)(c) Let R =
C[X, Y ]

(XY )
. Let x = [X] and y = [Y ].

(i)(i) Use the definition of prime ideal to show that Spec(R) = V (x) ∪ V (y).
(ii)(ii) Use the previous problem to completely describe V (x) and V (y).

(iii)(iii) Give a complete description/picture of Spec(R).

(a)(a)

· · · (X, Y ) (X − 1, Y ) (X − 1, Y − 1) (X − 7π, Y ) (Y − i
√
2, Y − 1) · · ·

· · · (x) (x− 1) (X2 − Y 3) (X2 + Y 2 + 1) (Y ) · · ·

(0)

(b)(b) p ∈ V (I) maps to p/I ∈ Spec(R/I).
(c)(c) (i)(i) Since xy = 0, if p is prime, we must have x ∈ p or y ∈ p.



(ii)(ii) V (x) ∼= Spec(R/(x)) ∼= Spec(C[Y ]) and V (y) ∼= Spec(R/(y)) ∼=
Spec(C[X]).

(iii)(iii)

(x− a, y) : a ∈ Cr 0 (x, y) (x, y − b) : b ∈ Cr 0

(x) (y)

(3)(3) Let R be a ring.
(a)(a) Show that for any subset S of R, V (S) = V (I) where I = (S).
(b)(b) Translate the lemma to fill in the blanks:

V (I) V (
√
I)

V (
∑
λ

Iλ) V (Iλ)

V (f1, . . . , fn) V (f1) · · · V (fn)

V (IJ) V (I) V (J)

V (I ∩ J) V (I) V (J)

D(I) D(
√
I)

D(
∑
λ

Iλ) D(Iλ)

D(f1, . . . , fn) D(f1) · · · D(fn)

D(IJ) D(I) D(J)

D(I ∩ J) D(I) D(J)
(c)(c) Use the above to verify that the Zariski topology indeed satisfies the axioms of a

topology.

(a)(a) This follows from definition of generating set of an ideal.

(b)(b)

V (I) = V (
√
I)

V (
∑
λ

Iλ) =
⋂
λ

V (Iλ)

V (f1, . . . , fn) = V (f1) ∩ · · · ∩ V (fn)

V (IJ) = V (I) ∪ V (J)

V (I ∩ J) = V (I) ∪ V (J)

D(I) = D(
√
I)

D(
∑
λ

Iλ) =
⋃
λ

D(Iλ)

D(f1, . . . , fn) = D(f1) ∪ · · · ∪D(fn)

D(IJ) = D(I) ∩D(J)

D(I ∩ J) = D(I) ∩D(J)
(c)(c) The D’s are closed under arbitrary unions and finite intersection; we also have

Spec(R) = D(1) and ∅ = D(0).

(4) The induced map on Spec: Let φ : R→ S be a ring homomorphism.
(a) Show that for any prime ideal q ⊆ S, the ideal φ∗(q) = φ−1(q) is a prime ideal of R.
(b) Show that for any ideal I ∈ R, we have

(φ∗)−1(V (I)) = V (IS) and (φ∗)−1(D(I)) = D(IS).

(c) Show that φ∗ is continuous.
(d) If φ : R→ R/I is quotient map, describe φ∗.



(a) φ−1(q) is the kernel of the map R
φ−→ S → S/q, so by the First Isomorphism

Theorem, R/φ−1(q) is isomorphic to a subring of S/q. Since S/q is a domain, so
is R/φ−1(q), so φ−1(q) is a prime ideal.

(b) Let q ∈ Spec(S). We claim that q ∈ V (IS) if and only if p := φ∗(q) ∈ V (I),
which shows both statements. Indeed, q ∈ V (IS) is equivalent to q contains IS.
Since IS is generated by φ(I), this is equivalent to q ⊇ φ(I), which is equivalent
to φ−1(q) ⊇ I . But this is the same as φ−1(q) ∈ V (I).

(c) Follows from the previous.
(d) This corresponds to the embedding V (I) ⊆ Spec(R).

(5) Let R and S be rings. Describe Spec(R× S) in terms of Spec(R) and Spec(S).

(6) Properties of Spec(R).
(a) Show that for any ring R, the space Spec(R) is compact.
(b) Show that if Spec(R) is Hausdorff, then every prime of R is maximal.
(c) Show that Spec(R) ∼= Spec(R/

√
0).

(7) Let K be a field, and R =
K[X1, X2, . . . ]

({Xi −XiXj | 1 ≤ i ≤ j})
. Describe Spec(R) as a set and as

a topological space.



§4.19: SPECTRUM OF A RING

FORMAL NULLSTELLENSATZ: Let R be a ring, I an ideal, and f ∈ R. Then V (f) ⊇ V (I) if
and only if f ∈

√
I .

COROLLARY 1: Let R be a ring. There is a bijection

{radical ideals in R} ←→ {closed subsets of Spec(R)}.

DEFINITION: Let R be a ring and I an ideal. A minimal prime of I is a prime p that contains I ,
and is minimal among primes containing I . We write Min(I) for the set of minimal primes of I .

LEMMA: Every prime that contains I contains a minimal prime of I .

COROLLARY 2: Let R be a ring and I be an ideal. Then
√
I =

⋂
p∈Min(I)

p.

DEFINITION: A subset W of a ring R is multiplicatively closed if 1 ∈ W and u, v ∈ W implies
uv ∈ W .

PROPOSITION: Let R be a ring and W be a multiplicatively closed subset. Then every ideal I
such that I ∩W = ∅ is contained in a prime ideal p such that p ∩W = ∅.

(1)(1) Proof of Formal Nullstellensatz and Corollaries.
(a)(a) Show the direction (⇐) of Formal Nullstellensatz.
(b)(b) Verify that W = {fn | n ≥ 0} is a multiplicatively closed set. Then apply the Proposi-

tion to prove the direction (⇒) of Formal Nullstellesatz.
(c)(c) Prove Corollary 1.
(d)(d) Prove the Lemma.
(e)(e) Prove Corollary 2.
(f)(f) What does Corollary 2 say in the special case I = (0)?

(a)(a) Suppose that f ∈
√
I , so fn ∈ I . If p ∈ V (I), then I ⊆ p, and fn ∈ p implies

f ∈ p, so p ∈ V (f).
(b)(b) Yes, it is a multiplicatively closed set. If f /∈

√
I , then W ∩ I = ∅, so there is some

prime p such that W ∩ p = ∅. In particular, f /∈ p, so V (f) 6⊇ V (I).
(c)(c) We map a radical ideal I to the closed set V (I). This is surjective since V (J) =

V (
√
J). If I, J are distinct radical ideals, then take some f ∈ J r I . Then V (f)

contains V (I) but not V (J), so V (I) 6= V (J).
(d)(d) Usual Zorn’s Lemma argument.
(e)(e) If f ∈

√
I , then f ∈ V (p) for all p containing I , so f is in every minimal prime of

I . On the other hand, if f is in every minimal prime of I , then it is in every prime
containing I , so V (f) ⊇ V (I), which implies f ∈

√
I .

(f)(f) An element is nilpotent if and only if it is in every minimal prime of the ring.



(2)(2) Use the Formal Nullstellensatz to fill in the blanks:

f is nilpotent ⇐⇒ V (f) = ⇐⇒ D(f) = .

What property replaces “nilpotent” if you swap the blanks for V and D above?

f is nilpotent ⇐⇒ V (f) = Spec(R) ⇐⇒ D(f) = ∅.

The opposite property is unit.

(3)(3) Prove1 the Proposition.

Given an increasing union of ideals that don’t intersect I , the union is an ideal and does
not intersect I , so by Zorn’s Lemma, there is an ideal maximal among those that don’t
intersect I; call it J . Let ab ∈ J with a, b /∈ J . Then (J + (a)) ∩W and (J + (b)) ∩W
are nonempty. Say u, v are elements in the respective intersections. Then u = j1 + ar1
and v = j2 + br2, and uv = j1j2 + j1br2 + j2ar2 + abr1r2 ∈ J .

(4) Let R be a ring. Show2 that Spec(R) is connected as a topological space if and only if
R 6∼= S × T for rings3 S, T .

First, suppose that R ∼= S × T . Then any prime ideal of R is of the form p × T for
p ∈ Spec(S) or S × q for q ∈ Spec(T ). So, as sets, there is a bijection Spec(R) ↔
Spec(S)

∐
Spec(T ). Moveover, this is a homeomorphism: the ideals in S × T are

of the form I × J , and V (I × J) ⊆ Spec(S × T ) corresponds to V (I)
∐

V (J) ⊆
Spec(S)

∐
Spec(T ), so this is the disjoint union topology. In particular, Spec(S) and

Spec(T ) are form a disconnection.
From above, we know that Spec(S × T ) ∼= Spec(S)

∐
Spec(T ) so it suffices to show

that Spec(R) disconnected implies that R has a nontrivial idempotent. Applying the
definition of disconnected, there exists some closed sets V (I), V (J) such that V (I) ∪
V (J) = Spec(R) and V (I) ∩ V (J) = ∅. Thus

√
I + J = R, so I + J = R and√

I ∩ J =
√
0, so I∩J consists of nilpotents. By CRT, we have R/(I∩J) ∼= R/I×R/J .

Set N = I ∩ J . We have that there is a nontrivial idempotent in R/N but e, 1− e /∈ N .
So there is some e ∈ R such that e−e2 ∈ N so en(1−e)n = 0 for some n. Set I ′ = (en)
and J ′ = (1 − e)n. We claim that I ′ + J ′ = R and I ′ ∩ J ′ = 0. Indeed, in R/I ′, e is
nilpotent, so 1− e is a unit, as is (1 − e)n. Thus, we can write (1 − e)nu = 1 + enf
for some u, f ∈ R, and hence 1 ∈ I ′ + J ′; then I ′ ∩ J ′ = I ′J ′ = 0. By CRT we have
R ∼= R/I ′×R/J ′. Finally, it remains to note that I ′, J ′ 6= 0 to see that this is proper: we
have 0 6= e = e2 = · · · = en in R/N , so we must have en 6= 0 and likewise (1−e)n 6= 0.

1Hint: Take an ideal maximal among those that don’t intersect W .
2Start with the (⇒) direction. For the other direction, use CRT.
3Recall that the zero ring is not a ring.



§5.20: LOCAL RINGS AND NAK

DEFINITION: A ring is local if it has a unique maximal ideal. We write (R,m) for a local ring to
denote the ring R and the maximal ideal m; we many also write (R,m, k) to indicate the residue field
k := R/m.

GENERAL NAK: Let R be a ring, I an ideal, and M be a finitely generated module. If IM = M ,
then there is some a ∈ R such that a ≡ 1 mod I and aM = 0.

LOCAL NAK 1: Let (R,m) be a local ring and M be a finitely generated module. If M = mM ,
then M = 0.

LOCAL NAK 2: Let (R,m) be a local ring and M be a finitely generated module. Let N be a
submodule of M . Then M = N +mM if and only if M = N .

LOCAL NAK 3: Let (R,m, k) be a local ring and M be a finitely generated module. Then a set
of elements S ⊆ M generates M if and only if the image of S in M/mM generates M/mM as a
k-vector space.

DEFINITION: Let (R,m, k) be a local ring and M be a finitely generated module. A set of elements
S of M is a minimal generating set for M if the image of S in M/mM is a basis for M/mM as a
k-vector space.

(1)(1) Local rings.
(a)(a) Show that for a ring R the following are equivalent:

• R is a local ring.
• The set of all nonunits forms an ideal.
• The set of all nonunits is closed under addition.

(b)(b) Show that if A is a domain then A[X] is not a local ring.
(c)(c) Show that if K is a field, the power series ring R = KJX1, . . . , XnK is a local ring.
(d)(d) Let p ∈ Z be a prime number, and Z(p) ⊆ Q be the set of rational numbers that can be

written with denominator not a multiple of p. Show that (Z(p), pZ(p)) is a local ring.
(e)(e) Show that any quotient of a local ring is also a local ring.

(a)(a) Since any element times a nonunit is a nonunit, the last two are equivalent. Recall that
an element is a unit if and only if it is not in any maximal ideal. So, if (R,m) is local,
the nonunits are the elements of m, which is an ideal; conversely, if the nonunits form
an ideal, then this ideal must be the unique maximal ideal.

(b)(b) X and X + 1 are nonunits, but 1 = (X + 1)−X is a unit.
(c)(c) The set of nonunits is the elements with zero constant term, which is the ideal

(X1, . . . , Xn).
(d)(d) First, check that this is a ring. Then note that the units in this ring are the fractions a/b

with p - a, b, which is complement of the ideal pZ(p).
(e)(e) This follows from the Lattice Isomorphism Theorem.

(2)(2) General NAK implies Local NAKs
(a)(a) Show that General NAK implies Local NAK 1.



(b)(b) Briefly1 explain why Local NAK 1 implies Local NAK 2.
(c)(c) Briefly2 explain why Local NAK 2 implies Local NAK 3.
(d)(d) Use Local NAK 3 to briefly explain why a minimal generating set is a generating set, and

that, in this setting, any generating set contains a minimal generating set.

(a)(a) If mM = M , then by General NAK, there is some a ∈ m such that a ≡ 1modm and
aM = 0. But a must be a unit, so M = 0!

(b)(b) Same as the graded case: apply NAK 1 to M/N .
(c)(c) Same as the graded case: apply NAK 2 to N =

∑
s∈S Rs.

(d)(d) Same as the graded case: a k-basis for M/mM is a k-spanning set for M/mM , and any
k-spanning set for M/mM contains a k-basis.

(3)(3) Proof of General NAK: Let M =
∑n

i=1Rmi. Set v to be the row vector [m1, . . . ,mn].
(a)(a) Suppose that IM = M . Explain why there is an n× n matrix A with entries in I such that

vA = v.
(b)(b) Apply a TRICK and complete the proof.

(a)(a) Each mi is an element of IM , so we can write mi =
∑

j bjnj with nj ∈ M and bj ∈ I .
We can then write nj as a linear combination of the mi’s. Combining all together, we
can write mi =

∑
j ajmj with aj ∈ I . These linear combinations are the columns of a

matrix A as desired.
(b)(b) By the Eigenvector trick, det(A− 1) kills v, so kills M . Going mod I we have

det(A− 1) ≡ det(−1) ≡ ±1; up to sign, a = det(A− 1) is the element we seek.

(4) Let (R,m) be a local ring, f ∈ R not a unit, and M be a nonzero finitely generated module.
Show that there is some element of M that is not a multiple of f .

Suppose otherwise. Then M = fM . We have f ∈ m, so M = fM ⊆ mM ⊆ M , so
M = mM . But by NAK, we then have M = 0, a contradiction.

(5) Applications of NAK.
(a) Let R be a ring and I be a finitely generated ideal. Show that if I2 = I then there is some

idempotent e such that I = (e).
(b) Find a counterexample to (a) if I is not assumed to be finitely generated.
(c) Let (R,m) be a Noetherian local ring and M be a finitely generated module. Show that⋂

n≥1m
nM = 0.

(d) Find a counterexample to (c) if (R,m) is still Noetherian local but M is not finitely gener-
ated.

(e) Find a counterexample to (c) if (R,m) with M = R, m is a maximal ideal, but R is not
necessarily Noetherian and local.

(f) Let R be a Noetherian ring, and M a finitely generated module. Let φ : M → M be a
surjective R-module homomorphism. Show3 that φ must also be injective.

(g) Let (R,m) be a local ring. Suppose that Rred := R/
√
0 is a domain, and that there is some

f ∈ R such that R/fR is reduced (and nonzero). Show that R is reduced (and hence a
domain).

1Reuse an old argument in a similar setting.
2It’s déjà vu all over again.
3Hint: Take a page from the 818 playbook and give M an R[X]-module structure.



§5.21: LOCALIZATION OF RINGS

DEFINITION: Let R be a ring and W a multiplicatively closed subset with 0 /∈ W . The localization
W−1R is the ring with

• elements equivalence classes of (r, w) ∈ R×W , with the class of (r, w) denoted as
r

w
.

• with equivalence relation
s

u
=

t

v
if there is some w ∈ W such that w(sv − tu) = 0,

• addition given by
s

u
+

t

v
=

sv + tu

uv
, and

• multiplication given by
s

u

t

v
=

st

uv
.

(If 0 ∈ W , then W−1R := 0, which by our convention is not a ring.)

DEFINITION: Let R be a ring.
• If f ∈ R is nonnilpotent1, then Rf := {1, f, f 2, . . . }−1R.
• If p ⊆ R is a prime ideal then Rp := (Rr p)−1R.
• The total quotient ring of R is Frac(R) := {w ∈ R | w is a nonzerodivisor}−1R.

For a ring R, multiplicative set W 63 0, and an ideal I , we define

W−1I :=
{ a

w
∈ W−1R | a ∈ I

}
.

THEOREM: Let R be a ring and W be a multiplicatively closed subset. Then the map induced on
Spec corresponding to the natural map R→ W−1R yields a homeomorphism into its image:

Spec(W−1R) ∼= {p ∈ Spec(R) | p ∩W = ∅}.

LEMMA: Let R be a ring and W be a multiplicatively closed subset.
(1) For any ideal I ⊆ R, W−1I = I(W−1R).
(2) For any ideal I ⊆ R, W−1I ∩R = {r ∈ R | ∃w ∈ W : wr ∈ I}.
(3) For any ideal J ⊆ W−1R, W−1(J ∩R) = J .
(4) For any prime ideal p ⊆ R with2 p ∩W = ∅, W−1p is prime.

(1)(1) Computing localizations
(a)(a) What is the natural ring homomorphism R→ W−1R?
(b)(b) Show that the kernel of R→ W−1R is W0 := {r ∈ R | ∃w ∈ W : wr = 0}.
(c)(c) If every element of W is a nonzerodivisor, explain why the equivalence relation on W−1R

simplifies to s
u

= t
v

if and only if sv = tu.
(d)(d) If R is a domain, explain why Frac(R) is the usual fraction field of R.
(e)(e) If R is a domain, explain why W−1R is a subring of the fraction field of R. Which subring?
(f)(f) Let R = R/W0 and W be the image of W in R. Show that W−1R ∼= W

−1
R.

1If f is nilpotent, 0 ∈ {1, f, f2, . . . } so Rf = 0.
2If W ∩ p 3 a, then W−1p 3 a

a = 1
1 , so W−1p =W−1R is the improper ideal!



(a)(a) r 7→ r
1
.

(b)(b) r
1

= 0
1

if and only if ∃w ∈ W : rw = w(1r − 0) = 0.
(c)(c) w(sv − tu) = 0 and w a nonzerdivisor implies sv − tu = 0; i.e., sv = tu.
(d)(d) In light of the above, it’s just the definition.
(e)(e) The equivalence relation on the fractions is the same as that in the fraction field, so the

map is injective; the operations are definitely the same. It is the subring consisting of
fractions that can be written with denominator in W .

(f)(f) We define a map from W−1R → W
−1
R by r

w
7→ r

w
. It is clear from the construction

that this is a surjective homomorphism. Suppose that r
w

is in the kernel, so r
w

= 0
1
.

This means that there is some v ∈ W such that vr = 0; i.e., vr ∈ W0 for some v ∈ W .
Then there is some u ∈ W such that uvr = 0, but uv ∈ W , so r

w
= 0

1
in W−1R.

(2)(2) Ideals in localizations: Let R be a ring and W a multiplicatively closed set.
(a)(a) Use the Theorem to show that, if f ∈ R is nonnilpotent, then

Spec(Rf ) ∼= D(f) ⊆ Spec(R).

(b)(b) Use the Theorem to show that, if p ⊆ R is prime, then

Spec(Rp) ∼= {q ∈ Spec(R) | q ⊆ p} =: Λ(p).

Deduce that Rp is always a local ring.
(c)(c) Draw3 a picture of Spec(C[X,Y ]

(XY ) (x,y)
).

(d)(d) Use Part (3) of the Lemma to show that every ideal of W−1R is of the form W−1I for
some ideal I ⊆ R.

(e)(e) Use Part (3) of the Lemma to show that any localization of a Noetherian ring is Noetherian.

(a)(a) The condition p ∩ {1, f, f 2, . . . } = ∅ is equivalent to f /∈ p; i.e., f ∈ D(p).
(b)(b) The condition q∩ (Rrp) = ∅ is equivalent to q ⊆ p; i.e., q ∈ Λ(p). There is a unique

maximal element in this set, namely p, so Rp is local.
(c)(c)

(x, y)

(x) (y)

(d)(d) Clear.
(e)(e) Given an ideal of W−1R, write it as I(W−1R) for some ideal I of R. Then I =

(f1, . . . , ft) by Noetherianity, whence I(W−1R) is generated by the images f1
1
, . . . , ft

1
.

(3)(3) Examples of localizations
(a)(a) Describe as concretely as possible the rings Z2 and Z(2) as defined above.
(b)(b) Describe as concretely as possible the rings K[X]X and K[X](X).
(c)(c) Describe as concretely as possible the rings K[X, Y ]X and K[X, Y ](X).

(d)(d) Describe as concretely as possible the rings
(

K[X,Y ]
(XY )

)
x

and
(

K[X,Y ]
(XY )

)
(x)

.

3Recall that Spec(C[X,Y ]
(XY ) ) consists of {(x), (y), (x, y − α), (x− β, y) | α, β ∈ C}.



(e)(e) Describe as concretely as possible
(

K[X,Y ]
(X2)

)
x

and
(

K[X,Y ]
(X2)

)
(x)

.

(a)(a) Z2 = {a/b ∈ Q | b = 2n} and Z(2) = {a/b ∈ Q | 2 - b}.
(b)(b) K[X]X = {f/g ∈ K(X) | g = Xn} and K[X](X) = {f/g ∈ K(X) | X - g}.
(c)(c) K[X, Y ]X = {f/g ∈ K(X, Y ) | g = Xn}

and K[X, Y ](X) = {f/g ∈ K(X, Y ) | X - g}.
(d)(d)
(

K[X,Y ]
(XY )

)
x

∼= K[X,X−1] and
(

K[X,Y ]
(XY )

)
(x)

∼= K(Y ).

(e)(e)
(

K[X,Y ]
(X2)

)
x

∼= K[Y ] and
(

K[X,Y ]
(X2)

)
(x)

∼= K(Y )[X]/(X2).

(4) Prove the Lemma and the Theorem.

Lemma:
(a) For the containment ⊆, we have a

w
= a

1
1
w

. For the other, given
∑

i
ai
1

ri
wi

, take w =

w1 · · ·wt and w′i to be the product of all w’s except wi; then∑
i

ai
1

ri
wi

=
∑
i

ai
1

w′iri
w

=
∑
i

aiw
′
iri

w
∈ W−1I.

(b) We have r ∈ W−1I ∩ R if and only if r
1
∈ W−1I , so r

1
= a

w
some a ∈ I, w ∈ W .

Then there is some u ∈ W such that u(wr − a) = 0, so (uw)r ∈ I , as claimed.
(c) Let j = r

w
∈ J . Then r

1
= wj ∈ J ∩ R, r

w
= 1

w
r
1
∈ W−1(J ∩ R). Conversely, if

a
w
∈ W−1(J ∩R) so a ∈ J ∩R, then a

1
∈ J , and a

w
= 1

w
a
1
∈ J .

(d) Let a
u
, b
v
∈ W−1R, and ab

uv
∈ W−1p. Then there are some w ∈ W and p ∈ p such that

ab
uv

= p
w

, so there is t ∈ W with t(wab− uvp) = 0, so (tw)ab ∈ p. Since W ∩ p = ∅,
tw /∈ p so a ∈ p or b ∈ p, and hence a

u
∈ W−1p or b

v
∈ W−1p.

Theorem: Suppose that q is a prime ideal in W−1R and q ∩ R = p. Then W−1p =
W−1(q ∩ R) = q. This shows that the only ideal (in particular, the only prime ideal) that
contracts to p is W−1p, so this map is injective. Since W−1p is prime for any p ∩W = ∅,
and is the bogus ideal otherwise, the image is exactly the primes with p ∩ W = ∅. To
see that it induces a homeomorphism onto its image, it suffices to show that the image
of a closed set is closed. One checks from the definition that the image of V (W−1I) is
V (I) ∩ {p ∈ Spec(R) | p ∩W = ∅}.

(5) Prove the following LEMMA: If V,W are multiplicatively closed sets, then (VW )−1R ∼=
(V
1

)−1(W−1R), where (V
1

)−1 is the image of V in W−1R.

Check that the map (r/w)/(v/1) 7→ r/(wv) is an isomorphism: it is clearly a ring ho-
momorphism, and clearly surjective. If r/(wv) is zero, then there is some u ∈ VW with
ur = 0. We can write u = st with s ∈ V and t ∈ W , so str = 0. But this implies that
s(r/w) = 0 in W−1R (because there is some t ∈ W such that str = 0), and this means
that (r/w)/(v/1) = 0.



(6) Minimal primes.
(a) Let p be a minimal prime of R. Show that for any a ∈ p, there is some u /∈ p and n ≥ 1

such that uan = 0.
(b) Show that the set of minimal4 primes Min(R) with the induced topology from Spec(R) is

Hausdorff.
(c) Let R = K[X1, X2, X3, . . . ]/({XiXj | i 6= j}). Describe Min(R) as a topological space.

4Min(R) denotes the set of primes of R that are minimal. This is the same as Min(0) in our notation of minimal primes of
an ideal; this conflict of notation is standard.



§5.22: LOCALIZATION OF MODULES

DEFINITION: Let R be a ring, M an R-module, and W a multiplicatively closed subset. The
localization W−1M is the W−1R-module1 with

• elements equivalence classes of (m,w) ∈M ×W , with the class of (m,w) denoted as
m

w
.

• with equivalence relation
m

u
=
n

v
if there is some w ∈ W such that w(vm− un) = 0,

• addition given by
m

u
+
n

v
=
vm+ un

uv
, and

• action given by
r

u

m

v
=
rm

uv
.

If α : M → N is a homomorphism of R-modules, then the W−1R-module homomorphism
W−1α : W−1M → W−1N is defined by W−1α(m

w
) = α(m)

w
.

DEFINITION: Let R be a ring and M a module.
• If f ∈ R, then Mf := {1, f, f 2, . . . }−1M .
• If p ⊆ R is a prime ideal then Mp := (Rr p)−1M .

PROPOSITION: Let R be a ring, W a multiplicatively closed set, and N ⊆M be modules. Then
• W−1N is a submodule of W−1M , and

• W−1(M/N) ∼=
W−1M

W−1N
.

COROLLARY: Let R be a ring, I an ideal, and W a multiplicatively closed subset. Then the map
R→ W−1(R/I) induces an order preserving bijection

Spec(W−1(R/I))
∼−→ {p ∈ Spec(R) | p ⊇ I and p ∩W = ∅}.

(1)(1) Let M be an R-module and W be a multiplicatively closed set.
(a)(a) What is the natural map from M → W−1M?
(b)(b) If S is a generating set for M , explain why S

1
= { s

1
| s ∈ S} is a generating set for W−1M .

(c)(c) Let m ∈ M . Show that m
u

is zero in W−1M if and only if there is some w ∈ W such that
wm = 0 in M .

(d)(d) Let m1, . . . ,mt ∈ M be a finite set of elements. Show that m1

u1
, . . . , mt

ut
∈ W−1M are all

zero if and only if there is some w ∈ W that such that wmi = 0 in M for all i.
(e)(e) Let M be a finitely generated module. Show that W−1M = 0 if and only if Mw = 0 for

some w ∈ W .
(f)(f) Let m ∈M and p be a prime ideal. Show that m

1
6= 0 in Mp if and only if p ⊇ annR(m).

(a) m 7→ m
1

(b) We can write m
w
=

∑
i rimi

w
=

∑
i
ri
w
mi

1
.

(c) m
u
= 0

1
iff ∃w such that 0 = w(1m− 0u) = wm.

(d) The “if” is clear; for the only if, we have w1m1 = · · ·wtmt = 0 so we can take w =
w1 · · ·wt.

1If 0 ∈W , then W−1R = 0 is not a ring.



(e) Take a finite generating set for M . Then W−1M = 0 iff each generator maps to 0 iff
there is a w that kills each mi iff the corresponding Mw = 0.

(f) m
1
= 0 if and only if there is some w /∈ p with wm = 0, which happens if and only if

p 6⊇ annR(m).

(2)(2) Prove the Proposition.

For the first part, we need to show that a nonzero element in W−1N is nonzero in W−1M .
If n

u
6= 0, in W−1M then there is some w ∈ W such that wn = 0, which is the same as the

condition to be zero in W−1N .
For the second part, consider the map from W−1M to W−1(M/N) given by m

u
7→ mu.

Clearly, W−1N is contained in the kernel. An element is in the kernel if and only if there is
some w ∈ W such that wm = 0 in M/N , which means wm ∈ N . Then m

u
= wm

wu
∈ W−1N .

(3)(3) Corollary.
(a)(a) Rewrite the Corollary in the special case W = Rr p for some prime p.
(b)(b) Use the Proposition2 to justify the Corollary.

(a)(a) There is a bijection between Spec((R/I)p) and primes of R containing I but also con-
tained in p.

(b)(b) We have W−1(R/I) ∼= W−1R/W−1I . Fromt he Proposition, this is an isomorphism
of R-modules, but it is easy to see that the map is in fact a ring isomorphism. The
primes in W−1R are of the form W−1p for p ∈ Spec(R) such that p ∩W = ∅. By the
lattice isomorphism theorem, the primes in W−1R/W−1I correspond to primes W−1p
that containW−1I . But if p ⊇ I thenW−1p ⊇ W−1I , and ifW−1p ⊇ W−1I , then since
W−1p ∩ R = p (from definition of prime) I ⊆ W−1I ∩ R ⊆ W−1p ∩ R = p. Thus,
there is a bijection between primes containing I and not intersecting W with primes of
W−1(R/I).

(4) Invariance of base: Let φ : R → S be a ring homomorphism, and V ⊆ R and W ⊆ S be multi-
plicatively closed sets such that φ(V ) = W . Show that for any S-module M , V −1M ∼= W−1M .

(5) I’m already local!
(a) Suppose that the action of each w ∈ W on M is invertible: for every w ∈ W the map

m 7→ mw is bijective. Show that M ∼= W−1M via the natural map.
(b) Let R be a ring, m a maximal ideal (so R/m is a field), and M a module such that mM = 0.

Show that M ∼= Mm by the natural map.
(c) More generally, show that3 if for every m ∈ M there is some n such that mnm = 0, then

M ∼= Mm.

2Hint: You may want to show that, for W ∩ p = ∅, I ⊆ p if and only if W−1I ⊆W−1p. For this, it may help to observe that
W−1p ∩ R = p. You can also use that the isomorphism from the Proposition is a ring isomorphism when R is a ring and I
is an ideal.

3Hint: Note that R/mn is local with maximal ideal (the image of) m.



(a) The map is injective, since wm = 0 implies m = 0, and surjective since m
w
= m′w

w
= m′

1
for some m′.

(b) Let u ∈ R r m. Then since R/m is a field, there is some v ∈ R such that uv ≡ 1
mod m. Then for any m ∈ M , we have uvm = (1 + a)m = m for some a ∈ m. In
particular the action of v is the inverse of u.

(c) Because R/mn is local with maximal ideal m, every element not in m in this ring is a
unit. Thus, given u ∈ R r m, there is some v ∈ R such that uv ≡ 1 mod mn. This
shows that the action of u on M is bijective and the first part applies.

(6) Prove the following:
LEMMA: Let R be a ring, W a multiplicatively closed set. Let M be a finitely presented4

R-module, and N an arbitrary R-module. Then for any homomorphism of W−1R-modules
β : W−1M → W−1N , there is some w ∈ W and some R-module homomorphism α : M → N
such that β = 1

w
W−1α.

(a) Given β, show that there exists some u ∈ W such that for every m ∈M , u
1
β(M

1
) ⊆ N

1
.

(b) Let m1, . . . ,ma be a (finite) set of generators for M , and A = [rij] be a corresponding
(finite) matrix of relations. Let n1, . . . , na be an a-tuple of elements of N . Justify: There
exists an R-module homomorphism α : M → N such that α(mi) = ni if and only if
[n1, · · · , na]A = 0.

(c) Complete the proof.

(a) Let m1, . . . ,ma be a (finite) set of generators for M . We have β(mi

1
) = ti

wi
for some

ti ∈ N and wi ∈ W . Take u = w1 · · ·wa.
(b) For α to be well-defined means that relations map to zero; it suffices to show that any

defining relation maps to zero, and the condition above just says this.
(c) In the notation of the above, let n

′
i

u
= β(mi). Note that

[
n′1
u
, · · · , n

′
a

u
]A = [βm1, · · · , βma]A = β([m1, . . . ,ma]A) = 0 in W−1N.

But this just means that there is some v ∈ W such that v kills each entry of
[
n′
1

u
, · · · , n

′
a

u
]A. But then

[vn′1, · · · , vn′a]A = (uv)[
n′1
u
, · · · , n

′
a

u
]A = 0.

This means that the map α given by α(mi) = vn′i is well defined, and β = 1
uv
W−1α

since it is true for each generator mi.

4This means that M admits a finite generating set for which the module of relations is also finitely generated.



§5.23: LOCAL PROPERTIES AND SUPPORT

DEFINITION: Let P be a property1 of a ring. We say that
• P is preserved by localization if

P holds for R =⇒ for every multiplicatively closed set W , P holds for W−1R.

• P is a local property if

P holds for R⇐⇒ for every prime ideal p ∈ Spec(R), P holds for Rp.

One defines preserved by localization and local property for properties of modules in the same way,
or for properties of a ring element (where one considers r

1
∈ W−1R or Rp in the right-hand side) or

module element.

DEFINITION: The support of a module M is

{p ∈ Spec(R) |Mp 6= 0}.

PROPOSITION: If M is a finitely generated module, then Supp(M) = V (annR(M)).

(1)(1) Let R be a ring, M be a module, and m ∈M .
(a)(a) Show that2 the following are equivalent:

(i) m = 0 in M ;
(ii) m

1
= 0 in W−1M for all multiplicatively closed W ⊆ R;

(iii) m
1
= 0 in Mp for all p ∈ Spec(R);

(iv) m
1
= 0 in Mm for all m ∈ Max(R).

(b)(b) Deduce that “= 0” (as a property of a module element) is preserved by localization, and a local
property.

(c)(c) Show that the “= 0” locus (as a property of a module element) of m ∈M is D(annR(m)).

(a)(a) The implication (i)⇒(ii) is clear from the definition of localization, and (ii)⇒(iii)⇒(iv) are
tautologies. Suppose that m 6= 0. Then annR(m) is a proper ideal, so it is contained in some
maximal ideal m. We claim that m/1 is nonzero in Mm. Indeed, m/1 is zero if and only if
there is some w ∈ Rrm such that wm = 0, but by assumption this is impossible.

(b)(b) The implication (i)⇒(ii) means preserved by localization, while (i)⇔(iii) means local prop-
erty.

(c)(c) Reviewing the argument from (a), we have m
1

= 0 if and only if there is some w ∈ W
with wm = 0, which happens if and only if R r p ∩ annR(m) = ∅, which is equivalent to
annR(m) ⊆ p.

(2)(2) Let R be a ring, M be a module.
(a)(a) Show that the following are equivalent, and deduce that “= 0” (as a property of a module) is

preserved by localization, and a local property.
(i) M = 0

(ii) W−1M = 0 for all multiplicatively closed W ⊆ R;
(iii) Mp = 0 for all p ∈ Spec(R);
(iv) Mm = 0 for all m ∈ Max(R).

1For example, two properties of a ring are “is reduced” or “is a domain”.
2Hint: Go (i)⇒(ii)⇒(iii)⇒(iv)⇒(i). For the last, If m 6= 0, consider a maximal ideal containing annR(m).



(b)(b) Prove3 the Proposition.

(a)(a) Again (i)⇒(ii)⇒(iii)⇒(iv) are clear. If M 6= 0, take some nonzero m ∈ M . Then there is
some m such that m/1 is nonzero in Mm so Mm 6= 0.

(b)(b) Let M =
∑

i Rmi. Since Mp =
∑

i Rp
mi

1
, we have Mp = 0 if and only each mi

1
=

0, which happens if and only if p ∈ ∩iD(annR(mi)). This equals D(∩iDannR(mi)) =
D(annR(M)). Then, we are considering the complement.

(3)(3) More local properties
(a)(a) Let R be a ring and N ⊆M modules. Show4 that the following are equivalent, and deduce that

M = N for a submodule N is preserved by localization and a local property:
(i) M = N .

(ii) W−1M = W−1N for all multiplicatively closed W ⊆ R;
(iii) Mp = Np for all p ∈ Spec(R);
(iv) Mm = Nm for all m ∈ Max(R).

(b)(b) Let R be a ring. Show that the following are equivalent:
(i) R is reduced

(ii) W−1R is reduced for all multiplicatively closed W ⊆ R;
(iii) Rp is reduced for all p ∈ Spec(R).
(iv) Rm is reduced for all m ∈ Max(R).

(a)(a) Again (i)⇒(ii)⇒(iii)⇒(iv) are clear. If N $ M , then M/N 6= 0, and by the above there is
some m such that (M/N)m 6= 0. But (M/N)m ∼= Mm/Nm so Nm $ Mm.

(b)(b) Suppose that R is reduced and let W ⊆ R be multiplicatively closed. Take a nilpotent
element r/w. Then (r/w)n = 0 implies there is some v ∈ W with vrn = 0. Then (vr)n = 0
so vr = 0 and r/w = 0 in Rp. Again (ii)⇒(iii)⇒(iv) are tautologies. Suppose that R is not
reduced and take rn = 0 with r 6= 0. By part (a), for every maximal ideal m in Rm we have
(r/1)n = 0, and for some maximal ideal we have r/1 6= 0, so Rm is not reduced.

(4) Not so local.
(a) Show that the property R is a domain is preserved by localization.
(b) Let K be a field and R = K ×K. Show that Rp is a field for all p ∈ Spec(R). Conclude that

the property that R is a domain (or R is a field) is not a local property.

(a)(a) Suppose that R is a domain and (a/u)(b/v) = 0 in some Rp. Then there is some w /∈ p
such that wab = 0, so a = 0 or b = 0, whence a/u = 0 or b/v = 0, so Rp is a domain.

(b)(b) The ring K ×K has two prime ideals 0×K and K × 0. The kernel of the localization map
(K×K)0×K is the set of elements that are killed by some element not in 0×K; i.e., the set
of (a, b) such that there is some (c, d) ∈ K× ×K with (ac, bd) = (0, 0). This forces a = 0
and conversely, for an element (0, b) we have (0, b)(1, 0) = (0, 0), so this kernel is exactly
0×K. Thus

(K ×K)0×K
∼=
(
K ×K

0×K

)
0×K

∼= K0
∼= K.

Similarly for the other prime.

3Recall that if M =
∑
iRmi is finitely generated then W−1M =

∑
iW
−1Rmi

1 and that an element annihilates a module if and
only if it annihilates every generator in a generating set.

4Hint: Consider M/N .



(5) More local properties, or not.
(a) Let M be an R-module. Show that the property that M is finitely generated is preserved by

localization but is not5 a local property.
(b) Let R ⊆ S be an inclusion of rings. Show that the properties that R ⊆ S is algebra-finite/integral/module-

finite are preserved by localization on R: i.e., if one of these holds, the same holds for W−1R ⊆
W−1S for any W ⊆ R multiplicatively closed.

(c) Let R ⊆ S be an inclusion of rings, and s ∈ S. Show that the property that s ∈ S is integral
over R is a local property on R: i.e., this holds if and only if it holds for s

1
∈ Sp over Rp for each

p ∈ Spec(R).
(d) Is the property that r ∈ R is a unit a local property?
(e) Is the property that r ∈ R is a zerodivisor a local property?
(f) Is the property that r ∈ R is nilpotent a local property?
(g) Let R ⊆ S be an inclusion of rings. Are the properties R ⊆ S is algebra-finite/module-finite

local properties on R?

(6) Let P be a local property of a ring, and f1, . . . , ft ∈ R such that (f1, . . . , ft) = R. Show that if P
holds for each Rfi , then P holds for R.

5Hint: Consider
⊕

α∈C C[X]/(X − α)


