EXAMPLE: The following are rings.

- (1) Rings of numbers, like \mathbb{Z} and $\mathbb{Z}[i] = \{a + bi \in \mathbb{C} \mid a, b \in \mathbb{Z}\}.$
- (2) Given a starting ring A, the polynomial ring in one indeterminate

 $A[X] := \{a_d X^d + \dots + a_1 X + a_0 \mid d \ge 0, a_i \in A\},\$

or in a (finite or infinite!¹) set of indeterminates $A[X_1, \ldots, X_n]$, $A[X_{\lambda} | \lambda \in \Lambda]$.

(3) Given a starting ring A, the power series ring in one indeterminate

$$A\llbracket X\rrbracket := \left\{ \sum_{i \ge 0} a_i X^i \mid a_i \in A \right\},\$$

or in a set of indeterminates $A[\![X_1, \ldots, X_n]\!]$.

- (4) For a set X, $\operatorname{Fun}(X, \mathbb{R}) := \{ \text{all functions } f : [0, 1] \to \mathbb{R} \} \text{ with pointwise } + \text{ and } \times. \}$
- (5) $\mathcal{C}([0,1]) := \{ \text{continuous functions } f : [0,1] \to \mathbb{R} \} \text{ with pointwise} + \text{ and } \times.$
- (6) $\mathcal{C}^{\infty}([0,1]) := \{\text{infinitely differentiable functions } f : [0,1] \to \mathbb{R} \}$ with pointwise + and ×.
- (\div) Quotient rings: given a starting ring A and an ideal I, R = A/I.
- (×) Product rings: given rings R and S, $R \times S = \{(r, s) \mid r \in R, s \in S\}$.

DEFINITION: An element x in a ring R is called a

- unit if x has an inverse $y \in R$ (i.e., xy = 1).
- zerodivisor if there is some $y \neq 0$ in R such that xy = 0.
- **nilpotent** if there is some $e \ge 0$ such that $x^e = 0$.
- idempotent if $x^2 = x$.

We also use the terms **nonunit**, **nonzerodivisor**, **nonnilpotent**, **nonidempotent** for the negations of the above. We say that a ring is **reduced** if it has no nonzero nilpotents.

(1) Warmup with units, zerodivisors, nilpotents, and idempotents.

- (a) What are the implications between nilpotent, nonunit, and zerodivisor?
- (b) What are the implications between reduced, field, and domain?
- (c) What two elements of a ring are always idempotents? We call an idempotent **nontrivial** to mean that it is neither of these.
- (d) If e is an idempotent, show that e' := 1 e is an idempotent² and ee' = 0.
- (2) Elements in polynomial rings: Let $R = A[X_1, \ldots, X_n]$ a polynomial ring over a *domain* A.
 - (a) If n = 1, and $f, g \in R = A[X]$, briefly explain why the top degree³ of fg equals the top degree of f plus the top degree of g. What if A is not a domain?
 - (b) Again if n = 1, briefly explain why R = A[X] is a domain, and identify all of the units in R.
 - (c) Now for general n, show that R is a domain, and identify all of the units in R.

¹Note: Even if the index set is infinite, by definition the elements of $A[X_{\lambda} | \lambda \in \Lambda]$ are finite sums of monomials (with coefficients in A) that each involve finitely many variables.

²We call e' the **complementary idempotent** to e.

³The top degree of $f = \sum a_i X^i$ is max $\{k \mid a_k \neq 0\}$; we say top coefficient for a_k . We use the term top degree instead of degree for reasons that will come up later.

- (3) Elements in power series rings: Let A be a ring.
 - (a) Explain why the set of formal sums $\{\sum_{i\in\mathbb{Z}}a_iX_i \mid a_i \in A\}$ with arbitrary positive and negative exponents is *not* clearly a ring in the same way as A[X].
 - (b) Given series $f,g \in A[X]$, how much of f,g do you need to know to compute the X^3 coefficient of f + q? What about the X^3 -coefficient of fq?
 - (c) Find the first three coefficients for the inverse⁴ of $f = 1 + 3X + 7X^2 + \cdots$ in $\mathbb{R}[X]$.
 - (d) Does "top degree" make sense in A[X]? What about "bottom degree"?
 - (e) Explain why⁵ for a domain A, the power series ring $A[X_1, \ldots, X_n]$ is also a domain.
 - (f) Show⁶ that $f \in A[X_1, \ldots, X_n]$ is a unit if and only if the constant term of f is a unit.
- (4) Elements in function rings.
 - (a) For $R = Fun([0, 1], \mathbb{R})$,
 - (i) What are the nilpotents in R?

(ii) What are the units in R?

- (iii) What are the idempotents in R? (iv) What are the zerodivisors in R?
- (b) For $R = \mathcal{C}([0, 1], \mathbb{R}), R = \mathcal{C}^{\infty}([0, 1], \mathbb{R})$ same questions as above. When are there any/none?
- (5) Product rings and idempotents.
 - (a) Let R and S be rings, and $T = R \times S$. Show that (1,0) and (0,1) are nontrivial complementary idempotents in T.
 - (b) Let T be a ring, and $e \in T$ a nontrivial idempotent, with e' = 1 e. Explain why $Te = \{te \mid t \in T\}$ and Te' are rings with the same addition and multiplication as T. Why didn't I say "subring"?
 - (c) Let T be a ring, and $e \in T$ a nontrivial idempotent, with e' = 1 e. Show that $T \cong Te \times Te'$. Conclude that R has nontrivial idempotents if and only if R decomposes as a product.
- (6) Elements in quotient rings:
 - (a) Let K be a field, and $R = K[X, Y]/(X^2, XY)$. Find
 - a nonzero nilpotent in R
 - a zerodivisor in R that is not a nilpotent
 - a unit in R that is not equivalent to a constant polynomial
 - (b) Find $n \in \mathbb{Z}$ such that
 - $[4] \in \mathbb{Z}/(n)$ is a unit
- $[4] \in \mathbb{Z}/(n)$ is a unit $[4] \in \mathbb{Z}/(n)$ is a nonzero nilpotent

- [4] ∈ Z/(n) is a nonnilp. zerodivisor
 [4] ∈ Z/(n) is a nontrivial idempotent

- (7) More about elements.
 - (a) Prove that a nilpotent plus a unit is always a unit.
 - (b) Let A be an arbitrary ring, and R = A[X]. Characterize, in terms of their coefficients, which elements of R are units, and which elements are nilpotents.
 - (c) Let A be an arbitrary ring, and R = A[X]. Characterize, in terms of their coefficients, which elements of R are nilpotents.

⁴It doesn't matter what the \cdots are!

⁵You might want to start with the case n = 1.

⁶Hint: For n = 1, given $f = \sum_{i} a_i X^i$, construct $g = \sum_{i} b_i X^i$ by defining b_m recursively $b_0 = 1/a_0$ and that the X^m -coefficient of $(\sum_{i=0}^m a_i X^i)(\sum_{i=0}^m b_i X_i)$ is 0 for m > 0.

DEFINITION: Let S be a subset of a ring R. The **ideal generated by** S, denoted (S), is the smallest ideal containing S. Equivalently,

 $(S) = \left\{ \sum r_i s_i \mid r_i \in R, s_i \in S \right\} \text{ is the set of } R\text{-linear combinations}^1 \text{ of elements of } S.$

We say that S generates an ideal I if (S) = I.

DEFINITION: Let I, J be ideals of a ring R. The following are ideals:

- $IJ := (ab \mid a \in I, b \in J).$ • $I^n := \underbrace{I \cdot I}_{n \text{ times}} = (a_1 \cdots a_n \mid a_i \in I) \text{ for } n \ge 1.$ • $I + J := \{a + b \mid a \in I, b \in J\} = (I \cup J).$
- $rI := (r)I = \{ra \mid a \in I\}$ for $r \in R$.
- $I: J := \{r \in R \mid rJ \subseteq I\}.$

DEFINITION: Let I be an ideal in a ring R. The **radical** of I is $\sqrt{I} := \{f \in R \mid f^n \in I \text{ for some } n \ge 1\}$. An ideal I is **radical** if $I = \sqrt{I}$.

DIVISION ALGORITHM: Let A be a ring, and R = A[X] be a polynomial ring. Let $q \in R$ be a monic polynomial; i.e., the leading coefficient of f is a unit. Then for any $f \in R$, there exist unique polynomials $q, r \in R$ such that f = qq + r and the top degree of r is less than the top degree of q.

(1) Briefly discuss why the two characterizations of (S) in Definition 2.1 are equal.

- (2) Finding generating sets for ideals: Let S be a subset of a ring R, and I an ideal.
 - (a) To show that (S) = I, which containment do you think is easier to verify? How would you check?
 - (b) To show that (S) = I given $(S) \subseteq I$, explain why it suffices to show that I/(S) = 0 in R/(S); i.e., that every element of I is equivalent to 0 modulo S.
 - (c) Let K be a field, R = K[U, V, W] and S = K[X, Y] be polynomial rings. Let $\phi : R \to S$ be the ring homomorphism that is constant on K, and maps $U \mapsto X^2, V \mapsto XY, W \mapsto Y^2$. Show that the kernel ϕ is generated by $V^2 - UW$ as follows:
 - Show that $(V^2 UW) \subset \ker(\phi)$.
 - Think of R as K[U, W][V]. Given $F \in \ker(\phi)$, use the Division Algorithm to show that $F \equiv F_1 V + F_0$ modulo $(V^2 - UW)$ for some $F_1, F_0 \in K[U, W]$ with $F_1 V + F_0 \in \ker(\phi)$.
 - Use $\phi(F_1V + F_0) = 0$ to show that $F_1 = F_0 = 0$, and conclude that $F \in \ker(\phi)$.
- (3) Radical ideals:

(a) Fill in the blanks and convince yourself:

- R/I is a field $\iff I$ is _____ R/I is a domain $\iff I$ is _____
- R/I is reduced $\iff I$ is

(b) Show that the radical of an ideal is an ideal.

- (c) Show that a prime ideal is radical.
- (d) Let K be a field and R = K[X, Y, Z]. Find a generating set² for $\sqrt{(X^2, XYZ, Y^2)}$.

¹Linear combinations always means *finite* linear combinations: the axioms of a ring can only make sense of finite sums.

²Hint: To show your set generates, you might consider the bottom degree of F considered as a polynomial in X and Y.

- (4) Evaluation ideals in polynomial rings: Let K be a field and $R = K[X_1, \ldots, X_n]$ be a polynomial ring. Let $\alpha = (\alpha_1, \ldots, \alpha_n) \in K^n$.
 - (a) Let $ev_{\alpha} : R \to K$ be the map of evaluation at α : $ev_{\alpha}(f) = f(\alpha_1, \ldots, \alpha_n)$, or $f(\alpha)$ for short. Show that $\mathfrak{m}_{\alpha} := \ker ev_{\alpha}$ is a maximal ideal and $R/\mathfrak{m}_{\alpha} \cong K$.
 - **(b)** Apply division repeatedly to show that $\mathfrak{m}_{\alpha} = (X_1 \alpha_1, \dots, X_n \alpha_n)$.
 - (c) For $K = \mathbb{R}$ and n = 1, find a maximal ideal that is not of this form. Same question with n = 2.
 - (d) With K arbitrary again, show that every maximal ideal \mathfrak{m} of R for which $R/\mathfrak{m} \cong K$ is of the form \mathfrak{m}_{α} for some $\alpha \in K^n$. Note: this is *not* a theorem with a fancy German name.
- (5) Lots of generators:
 - (a) Let K be a field and $R = K[X_1, X_2, ...]$ be a polynomial ring in countably many variables. Explain³ why the ideal $\mathfrak{m} = (X_1, X_2, ...)$ cannot be generated by a finite set.
 - (b) Show that the ideal $(X^n, X^{n-1}Y, \dots, XY^{n-1}, Y^n) \subseteq K[X, Y]$ cannot be generated by fewer than n + 1 generators.
 - (c) Let $R = C([0, 1], \mathbb{R})$ and $\alpha \in (0, 1)$. Show that for any element $g \in (f_1, \ldots, f_n) \subseteq \mathfrak{m}_{\alpha}$, there is some $\varepsilon > 0$ and some C > 0 such that $|g| < C \max_i \{|f_i|\}$ on $(\alpha \varepsilon, \alpha + \varepsilon)$. Use this to show that \mathfrak{m}_{α} cannot be generated by a finite set.
- (6) Evaluation ideals in function rings: Let $R = \mathcal{C}([0, 1], \mathbb{R})$. Let $\alpha \in [0, 1]$.
 - (a) Let $ev_{\alpha} : \mathcal{C}([0,1]) \to \mathbb{R}$ be the map of evaluation at α : $ev_{\alpha}(f) = f(\alpha)$. Show that $\mathfrak{m}_{\alpha} := ev_{\alpha}$ is a maximal ideal and $R/\mathfrak{m}_{\alpha} \cong \mathbb{R}$.
 - (b) Show that $(x \alpha) \subseteq \mathfrak{m}_{\alpha}$.
 - (c) Show that every maximal ideal R is of the form \mathfrak{m}_{α} for some $\alpha \in [0, 1]$. You may want to argue by contradiction: if not, there is an ideal I such that the sets $U_f := \{x \in [0, 1] \mid f(x) \neq 0\}$ for $f \in I$ form an open cover of [0, 1]. Take a finite subcover U_{f_1}, \ldots, U_{f_t} and consider $f_1^2 + \cdots + f_t^2$.
- (7) Division Algorithm.
 - (a) What fails in the Division Algorithm when g is not monic? Uniqueness? Existence? Both?
 - (b) Review the proof of the Division Algorithm.
- (8) Let K be a field and $R = K[\![X_1, \ldots, X_n]\!]$ be a power series ring in n indeterminates. Let $R' = K[\![X_1, \ldots, X_{n-1}]\!]$, so we can also think of $R = R'[\![X_n]\!]$. In this problem we will prove the useful analogue of division in power series rings:

WEIERSTRASS DIVISION THEOREM: Let $r \in R$, and write $g = \sum_{i \ge 0} a_i X_n^i$ with $a_i \in R'$. For some $d \ge 0$, suppose that $a_d \in R'$ is a unit, and that $a_i \in R'$ is *not* a unit for all i < d. Then, for any $f \in R$, there exist unique $q \in R$ and $r \in R'[X_n]$ such that f = gq + r and the top degree of r as a polynomial in X_n is less than d.

- (a) Show the theorem in the very special case $g = X_n^d$.
- (b) Show the theorem in the special case $a_i = 0$ for all i < d.
- (c) Show the uniqueness part of the theorem.⁴
- (d) Show the existence part of the theorem.⁵

³Hint: You might find it convenient to show that $(f_1, \ldots, f_m) \subseteq (X_1, \ldots, X_n)$ for some *n*, and then show that $(X_1, \ldots, X_n) \subsetneqq \mathfrak{m}$ ⁴Hint: For an element of *R'* or of *R*, write ord' for the order in the X_1, \ldots, X_{n-1} variables; that is, the lowest total X_1, \ldots, X_{n-1} degree of a nonzero term (not counting X_n in the degree). If qg + r = 0, write $q = \sum_i b_i X_n^i$. You might find it convenient to pick *i* such that $\operatorname{ord}'(b_i)$ is minimal, and in case of a tie, choose the smallest such *i* among these.

⁵Hint: Write $g_{-} = \sum_{i=0}^{t-1} a_i X_n^i$ and $g_{+} = \sum_{i=t}^{\infty} a_i X_n^i$. Apply (b) with g_{+} instead of g, to get some q_0, r_0 ; write $f_1 = f - (q_0 g + r_0)$, and keep repeating to get a sequence of q_i 's and r_i 's. Show that $\operatorname{ord}'(q_i), \operatorname{ord}'(r_i) \ge i$, and use this to make sense of $q = \sum_i q_i$ and $r = \sum_i r_i$.

DEFINITION: Let A be a ring. An A-algebra is a ring R equipped with a ring homomorphism $\phi : A \to R$; we call ϕ the structure morphism of the algebra¹. A homomorphism of A-algebras is a ring homomorphism that is compatible with the structure morphisms; i.e., if $\phi : A \to R$ and $\psi : A \to S$ are A-algebras, then $\alpha : R \to S$ is an A-algebra homomorphism if $\alpha \circ \phi = \psi$.

UNIVERSAL PROPERTY OF POLYNOMIAL RINGS: Let² A be a ring, and $T = A[X_1, \ldots, X_n]$ be a polynomial ring. For any A-algebra R, and any collection of elements $r_1, \ldots, r_n \in R$, there is a unique A-algebra homomorphism $\alpha : T \to R$ such that $\alpha(X_i) = r_i$.

DEFINITION: Let A be a ring, and R be an A-algebra. Let S be a subset of R. The **subalgebra** generated by S, denoted A[S], is the smallest A-subalgebra of R containing S. Equivalently³,

$$A[r_1,\ldots,r_n] = \left\{ \sum_{\text{finite}} ar_1^{d_1} \cdots r_n^{d_n} \mid a \in \phi(A) \right\}.$$

DEFINITION: Let R be an A-algebra. Let $r_1, \ldots, r_n \in R$. The ideal of A-algebraic relations on r_1, \ldots, r_n is the set of polynomials $f(X_1, \ldots, X_n) \in A[X_1, \ldots, X_n]$ such that $f(r_1, \ldots, r_n) = 0$ in R. Equivalently, the ideal of A-algebraic relations on r_1, \ldots, r_n is the kernel of the homomorphism $\alpha : A[X_1, \ldots, X_n] \to R$ given by $\alpha(X_i) = r_i$. We say that a set of elements in an A-algebra is algebraically independent over A if it has no nonzero A-algebraic relations.

DEFINITION: A **presentation** of an *A*-algebra *R* consists of a set of generators r_1, \ldots, r_n of *R* as an *A*-algebra and a set of generators $f_1, \ldots, f_m \in A[X_1, \ldots, X_n]$ for the ideal of *A*-algebraic relations on r_1, \ldots, r_n . We call f_1, \ldots, f_m a set of **defining relations** for *R* as an *A*-algebra.

PROPOSITION: If R is an A-algebra, and f_1, \ldots, f_m is a set of defining relations for R as an A-algebra, then $R \cong A[X_1, \ldots, X_n]/(f_1, \ldots, f_m)$.

- (1) Let R be an A-algebra and $r_1, \ldots, r_n \in R$.
 - (a) Discuss why the equivalent characterizations in the definition of $A[r_1, \ldots, r_n]$ are equivalent.
 - **(b)** Explain why $A[r_1, \ldots, r_n]$ is the image of the A-algebra homomorphism $\alpha : A[X_1, \ldots, X_n] \to R$ such that $\alpha(X_i) = r_i$.
 - (c) Suppose that $R = A[r_1, \ldots, r_n]$ and let f_1, \ldots, f_m be a set of generators for the kernel of the map α . Explain why $R \cong A[X_1, \ldots, X_n]/(f_1, \ldots, f_m)$, i.e., why the Proposition above is true.
 - (d) Suppose that R is generated as an A-algebra by a set S. Let I be an ideal of R. Explain why R/I is generated as an A-algebra by the image of S in R/I.
 - (e) Let $R = A[X_1, \ldots, X_n]/(f_1, \ldots, f_m)$, where $A[X_1, \ldots, X_n]$ is a polynomial ring over A. Find a presentation for R.

¹Note: the same R with different ϕ 's yield different A-algebras. Despite this we often say "Let R be an A-algebra" without naming the structure morphism.

²This is equally valid for polynomial rings in infinitely many variables $T = A[X_{\lambda} | \lambda \in \Lambda]$ with a tuple of elements of $\{r_{\lambda}\}_{\lambda \in \Lambda}$ in R in bijection with the variable set. I just wrote this with finitely many variables to keep the notation for getting too overwhelming.

³Again written with a finite set just for convenience.

- (2) Presentations of some subrings:
 - (a) Consider the \mathbb{Z} -subalgebra of \mathbb{C} generated by $\sqrt{2}$. Write the notation for this ring. Is there a more compact description of the set of elements in this ring? Find a presentation.
 - (b) Same as (a) with $\sqrt[3]{2}$ instead of $\sqrt{2}$.
 - (c) Let K be a field, and T = K[X, Y]. Come up with a concrete description of the ring $R = K[X^2, XY, Y^2] \subseteq T$, (i.e., describe in simple terms which polynomials are elements of R), and give a presentation as a K-algebra.
- (3) Infinitely generated algebras:
 - (a) Show that $\mathbb{Q} = \mathbb{Z}[1/p \mid p \text{ is a prime number}]$.
 - (b) True or false: It is a direct consequence of the conclusion of (a) and the fact that there are infinitely many primes that \mathbb{Q} is not a finitely generated \mathbb{Z} -algebra.
 - (c) Given p_1, \ldots, p_m prime numbers, describe the elements of $\mathbb{Z}[1/p_1, \ldots, 1/p_m]$ in terms of their prime factorizations. Can you ever have $\mathbb{Z}[1/p_1, \ldots, 1/p_m] = \mathbb{Q}$ for a finite set of primes?
 - (d) Show that \mathbb{Q} is not a finitely generated \mathbb{Z} -algebra.
 - (e) Show that, for a field K, the algebra $K[X, XY, XY^2, XY^3, ...] \subseteq K[X, Y]$ is not a finitely generated K-algebra.
 - (f) Show that, for a field K, the algebra $K[X, Y/X, Y/X^2, Y/X^3, ...] \subseteq K(X, Y)$ is not a finitely generated K-algebra.
- (4) More algebras:
 - (a) Give two different nonisomorphic $\mathbb{C}[X]$ -algebra structures on \mathbb{C} .
 - (b) Find a \mathbb{C} -algebra generating set for the ring of polynomials in $\mathbb{C}[X, Y]$ that only have terms whose total degree (X-exponent plus Y-exponent) is a multiple of three (e.g., $X^3 + \pi X^5 Y + 5$ is in while $X^3 + \pi X^4 Y + 5$ is out).
 - (c) Find a \mathbb{C} -algebra presentation for $\mathbb{C} \times \mathbb{C}$.
- (5) Let K be a field. Describe which elements are in the K-algebra $K[X, X^{-1}] \subseteq K(X)$, and find an element of K(X) not in $K[X, X^{-1}]$. Then compute⁴ a presentation for $K[X, X^{-1}]$ as a K-algebra.
- (6) Can you guess defining relations for the ring in (4b)? Can you prove your guess?

⁴Hint: Note that Division does not apply. Say $X_1 \mapsto X$ and $X_2 \mapsto Y$. Show that the top X_2 -degree coefficient of an algebraic relation is a multiple of X_1 , and use this to set an induction on the top X_2 -degree.

EXAMPLE: For a ring R, the following are sources of modules:

(1) The free module of *n*-tuples \mathbb{R}^n , or more generally, for a set Λ , the free module

 $R^{\oplus \Lambda} = \{ (r_{\lambda})_{\lambda \in \Lambda} \mid r_{\lambda} \neq 0 \text{ for at most finitely many } \lambda \in \Lambda \}.$

- (2) Every ideal $I \subseteq R$ is a submodule of R.
- (3) Every quotient ring R/I is a quotient module of R.
- (4) If S is an R-algebra, (i.e., there is a ring homomorphism α : R → S), then S is an R-module by restriction of scalars: r · s := α(r)s.
- (5) More generally, if S is an R-algebra and M is an S-module, then M is also an R-module by restriction of scalars: $r \cdot m := \alpha(r) \cdot m$.
- (6) Given an *R*-module *M* and $m_1, \ldots, m_n \in M$, the module of *R*-linear relations on m_1, \ldots, m_n is the set of *n*-tuples $[r_1, \ldots, r_n]^{\text{tr}} \in R^n$ such that $\sum_i r_i m_i = 0$ in *R*.

DEFINITION: Let M be an R-module. Let S be a subset of M. The **submodule generated by** S, denoted¹ $\sum_{m \in S} Rm$, is the smallest R-submodule of M containing S. Equivalently,

$$\sum_{m \in S} Rm = \left\{ \sum r_i m_i \mid r_i \in R, m_i \in S \right\} \text{ is the set of } R \text{-linear combinations of elements of } S.$$

We say that S generates M if $M = \sum_{m \in S} Rm$.

DEFINITION: A² **presentation** of an *R*-algebra *M* consists of a set of generators m_1, \ldots, m_n of *M* as an *R*-module and a set of generators $v_1, \ldots, v_m \in R^n$ for the submodule of *R*-linear relations on m_1, \ldots, m_n . We call the $n \times m$ matrix with columns v_1, \ldots, v_m a **presentation matrix** for *M*.

LEMMA: If M is an R-module, and A an $n \times m$ presentation matrix³ for M, then $M \cong R^n/\text{im}(A)$. We call the module $R^n/\text{im}(A)$ the **cokernel** of the matrix A.

- (1) Let M be an R-module and $m_1, \ldots, m_n \in M$.
 - (a) Briefly explain why the characterizations of the submodule generated by S are equivalent.
 - **(b)** Briefly explain why $\sum_{i} Rm_{i}$ is the image of the *R*-module homomorphism $\beta : R^{n} \to M$ such⁴ that $\beta(e_{i}) = m_{i}$.
 - (c) Let I be an ideal of R. How does a generating set of I as an ideal compare to a generating set of I as an R-module?
 - (d) Explain why the Lemma above is true.
 - (e) If M has an $a \times b$ presentation matrix A, how many generators and how many (generating) relations are in the presentation corresponding to A?
 - (f) What is a presentation matrix for a free module?

(2) Describe $\mathbb{Z}[\sqrt{2}]$ as a \mathbb{Z} -module.

¹If $S = \{m\}$ is a singleton, we just write Rm, and if $S = \{m_1, \ldots, m_n\}$, we may write $\sum_i Rm_i$.

 $^{^{2}}$ As written, there is a finite set of generators, and a finite set of generators for their relations. This is called a **finite presenta-tion**. One could do the same thing with an infinite generating set and/or infinite generating set for the relations.

 $^{^{3}}$ im(A) denotes the **image** or column space of A in \mathbb{R}^{n} . This is equal to the module generated by the columns of A.

⁴where e_i is the vector with *i*th entry one and all other entries zero.

- (3) Module structure for polynomial rings and quotients:
 - (a) Let R = A[X] be a polynomial ring. Give a generating set for R as an A-module. Is R a free A-module?
 - (b) Let R = A[X, Y] be a polynomial ring. Give a generating set for R as an A-module. Is R a free A-module?
 - (c) Let R = A[X]/(f), where f is a monic polynomial of top degree d. Apply the Division Algorithm to show that R is a free A-module with basis $[1], [X], \ldots, [X^{d-1}]$.
 - (d) Let $R = \mathbb{C}[X,Y]/(Y^3 iXY + 7X^4)$. Describe R as a $\mathbb{C}[X]$ -module, and then give a \mathbb{C} -vector space basis.
- (4) Let $R = \mathbb{C}[X]$ and $S = \mathbb{C}[X, X^{-1}] \subseteq \mathbb{C}(X)$. Find a generating set for S as an R-module. Does there exist a finite generating set for S as an R-module? Is S a free R-module?
- (5) Presentations of modules: Let K be a field, and R = K[X, Y] be a polynomial ring.
 - (a) Consider the quotient ring $K \cong R/(X, Y)$ as an *R*-module. Find a presentation for *K* as an *R*-module.
 - (b) Consider the ideal I = (X, Y) as an *R*-module. Find a presentation for *I* as an *R*-module.
 - (c) Consider the ideal $J = (X^2, XY, Y^2)$ as an *R*-module. Find a presentation for *J* as an *R*-module.
- (6) Let M be an R-module, $S \subseteq M$ a generating set, and $r \in R$. Show that rM = 0 if and only if rm = 0 for all $m \in S$.
- (7) Let K be a field, S = K[X, Y] be a polynomial ring, and $R = K[X^2, XY, Y^2] \subseteq S$. Find an R-module M such that $S = R \oplus M$ as R-modules. Given a presentations for S and M as R-modules.
- (8) Messing with presentation matrices: Let M be a module with an $n \times m$ presentation matrix A.
 - (a) If you add a column of zeroes to A, how does M change?
 - (b) If you add a row of zeroes to A, how does M change?
 - (c) If you add a row and column to A, with a 1 in the corner and zeroes elsewhere in the new row and column, how does M change?
 - (d) If A is a block matrix $\begin{bmatrix} B & 0 \\ 0 & C \end{bmatrix}$, what does this say about M?

Recall that given matrices A and B, the matrix product AB consists of linear combinations, namely: Each column of AB is a linear combinations of the columns of A, with coefficients/weights coming from the corresponding columns of B. That is,

$$(\operatorname{col} j \text{ of } AB) = \sum_{i=1}^{t} b_{ij} \cdot (\operatorname{col} i \text{ of } A);$$

note that b_{1j}, \ldots, b_{tj} is the *j*-th column of *B*.

PROPERTIES OF det: For a ring R, the determinant is a function det : $Mat_{n \times n}(R) \to R$ such that:

- (1) det is a polynomial expression of the entries of A of degree n.
- (2) det is a linear function of each column.
- (3) det(A) = 0 if the columns are linearly dependent.
- (4) $\det(AB) = \det(A) \det(B)$.
- (5) det can be computed by Laplace expansion along a row/column.
- (6) $\det(A) = \det(A^{\mathrm{tr}}).$
- (7) If $\phi : R \to S$ is a ring homomorphism, and $\phi(A)$ is the matrix obtained from A by applying ϕ to each entry, then $\det(\phi(A)) = \phi(\det(A))$.

ADJOINT TRICK: For an $n \times n$ matrix A over R,

$$\det(A)\mathbb{1}_n = A^{\mathrm{adj}}A = A A^{\mathrm{adj}},$$

where $(A^{\text{adj}})_{ij} = (-1)^{i+j} \det(\text{matrix obtained from } A \text{ by removing row } j \text{ and column } i).$

EIGENVECTOR TRICK: Let A be an $n \times n$ matrix, $v \in \mathbb{R}^n$, and $r \in \mathbb{R}$. If Av = rv, then $\det(r\mathbb{1}_n - A)v = 0$. Likewise, if instead v is a row vector and vA = rv, then $\det(r\mathbb{1}_n - A)v = 0$.

DEFINITION: Given an $n \times m$ matrix A and $1 \le t \le \min\{m, n\}$ the **ideal of** $t \times t$ **minors of** A, denoted $I_t(A)$, is the ideal generated by the determinants of all $t \times t$ submatrices of A given by choosing t rows and t columns. For t = 0, we set $I_0(A) = R$ and for $t > \min\{m, n\}$ we set $I_t(A) = 0$.

LEMMA: If A is an $n \times m$ matrix, B is an $m \times \ell$ matrix, and $t \leq 1$, then

- $I_{t+1}(A) \subseteq I_t(A)$
- $I_t(AB) \subseteq I_t(A) \cap I_t(B).$

PROPOSITION: Let M be a finitely presented module. Suppose that A is an $n \times m$ presentation matrix for M. Then $I_n(A)M = 0$. Conversely, if fM = 0, then $f \in I_n(A)^n$.

(1) Let M be a module. Suppose that m_1, \ldots, m_n is a generating set with corresponding presentation matrix A. Which of the following is true:

$$A\begin{bmatrix} m_1\\ \vdots\\ m_n \end{bmatrix} \stackrel{?}{=} 0 \qquad [m_1 \quad \cdots \quad m_n] A \stackrel{?}{=} 0.$$

Explain your answer in terms of the recollection on matrix multiplication above.

- (2) Eigenvector Trick:
 - (a) What familiar fact/facts from linear algebra (over fields) is/are related to the Eigenvector Trick?
 - (b) Use the Adjoint Trick to prove the Eigenvector Trick.
- (3) Show that a square matrix over a ring R is invertible if and only if its determinant is a unit.
- (4) Proof of Proposition:
 - (a) First consider the case m = n. Show that det(A) kills each generator m_i , and conclude that $I_n(A)M = 0$.
 - (b) Now consider the case $n \le m$. Show that for any $n \times n$ submatrix A' of A that det(A')M = 0, and conclude that $I_n(A)M = 0$. What's the deal when m < n?
 - (c) For the "conversely" statement, show that if fM = 0 then there is some matrix B such that $AB = f \mathbb{1}_n$, and deduce that $f \in I_n(A)^n$.
- (5) Prove the Lemma above.
- (6) Prove¹ FITTING'S LEMMA: If A and B are presentation matrices for the same R-module M of size $n \times m$ and $n' \times m'$ (respectively), and $t \ge 0$, then $I_{n-t}(A) = I_{n'-t}(B)$.

¹Hint: First consider the case when the two presentations have the same generating sets, but different generating sets for the relations. Reduce to the case where B = [A|v] for a single column v.

DEFINITION: Let $\phi : R \to S$ be a ring homomorphism.

- We say that ϕ is algebra-finite, or S is algebra-finite over R, if S is a finitely generated R-algebra.
- We say that ϕ is module-finite, or S is module-finite over R, if S is a finitely generated R-module.

One also often encounters the less self-explanatory terms **finite type** for algebra-finite, and **finite** for module-finite, but we will avoid these.

LEMMA: A module-finite map is algebra-finite. The converse is false.

DEFINITION: Let R be an A-algebra. We say that an element $r \in R$ is **integral** over A if r satisfies a monic polynomial with coefficients in A.

PROPOSITION: Let R be an A-algebra. If $r_1, \ldots, r_n \in R$ are integral over A, then $A[r_1, \ldots, r_n]$ is module-finite over A.

- (1) Algebra-finite vs module-finite: Let $\phi : A \to R$ be a ring homomorphism and $r_1, \ldots, r_n \in R$.
 - (a) Agree or disagree: an A-linear combination of r_1, \ldots, r_n is a special type of polynomial expression of r_1, \ldots, r_n with coefficients in A.
 - (b) Explain why $R = \sum_{i=1}^{n} Ar_i$ implies $R = A[r_1, \dots, r_n]$. Explain why module-finite implies algebra-finite.
 - (c) Let R = A[X] be a polynomial ring in one variable over A. Is the inclusion map $A \subseteq A[X]$ algebra-finite? Module-finite?
 - (d) Give an example of a map that is module-finite (and hence also algebra-finite).
 - (e) Give an example of a map that is not algebra-finite (and hence also not module-finite).
- (2) Integral elements: Use the definition of integral to determine whether each is integral or not.
 - (a) An indeterminate X in a polynomial ring A[X], over A.
 - **(b)** $\sqrt[3]{2}$, over \mathbb{Z} .
 - (c) $\frac{1}{2}$, over \mathbb{Z} .

(3) Proof of Proposition: Let A be a ring.

- (a) Let $f \in A[X]$ be monic, and let T = A[X]/(f). Explain why T is module-finite over A. What is a generating set?
- (b) Let R = A[r] be an algebra generated by one element $r \in R$. Suppose that r satisfies a monic polynomial $f \in A[X]$. How is R related to the ring T as in part (a)? Must they be equal?
- (c) Show that R as in (b) is module-finite over A. What is a generating set?
- (d) Let $S = A[r_1, \ldots, r_t]$ with $r_1, \ldots, r_t \in S$ integral over A. Use (c) and (4b) below to show that $A \to S$ is module-finite.
- (4) Finiteness conditions and compositions: Let $R \subseteq S \subseteq T$ be rings.
 - (a) If $R \subseteq S$ and $S \subseteq T$ are algebra-finite, show¹ that the composition $R \subseteq T$ is algebra-finite.
 - (b) If $R \subseteq S$ and $S \subseteq T$ are module-finite, show² that the composition $R \subseteq T$ is module-finite.

¹Hint: If $S = R[s_1, \ldots, s_m]$ and $T = S[t_1, \ldots, t_n]$, apply the definition of "algebra generated by" to $R[s_1, \ldots, s_m, t_1, \ldots, t_n] \subseteq T$. Why must the LHS contain S? After that, why must it contain T? ²Hint: If $S = \sum_i Rs_i$ and $T = \sum_j St_j$, use the "linear combinations" characterization of module generators to show

(5) Power series rings:

- (a) Let $A \to R$ be algebra-finite. Show that R is a countably-generated A-module.
- (b) Let A be a ring and R = A[X] be a power series ring over A. Show³ that R is not a countably generated A-module. Deduce that R is not algebra-finite over A.
- (6) Let $R \subseteq S \subseteq T$ be rings.
 - (a) If $R \subseteq T$ is algebra-finite, must $S \subseteq T$ be? What about $R \subseteq S$?
 - (b) If $R \subseteq T$ is module-finite, must $S \subseteq T$ be? What⁴ about $R \subseteq S$?
- (7) Let R be a ring, and M be an R-module. The Nagata idealization of M in R, denoted $R \ltimes M$, is the ring that
 - as a set and an additive group is just $R \times M = \{(r, m) \mid r \in R, m \in M\}$, and
 - has multiplication (r, m)(s, n) = (rs, rn + sm).

Convince yourself that $R \ltimes M$ is an *R*-algebra. Show that $R \subseteq R \ltimes M$ is module-finite if and only if *M* is a finitely generated *R*-module.

³Hint: Write $[g]_{\leq j}$ for the sum of terms in g of degree at most j. Suppose $R = \sum_{i=1}^{\infty} Af_i$, and construct $g \in R$ such that $[g]_{\leq n^2} \notin \sum_{i=1}^n A[f_i]_{\leq n^2}$.

⁴Hint: Use a problem below.

DEFINITION: Let $\phi : A \to R$ be a ring homomorphism. We say that ϕ is **integral** or that R is **integral** over A if every element of R is integral over A.

THEOREM: A homomorphism $\phi : A \to R$ is module-finite if and only if it is algebra-finite and integral. In particular, every module-finite extension is integral.

COROLLARY 1: An algebra generated (as an algebra) by integral elements is integral.

COROLLARY 2: If $R \subseteq S$ is integral, and x is integral over S, then x is integral over R.

PROPOSITION: Let $R \subseteq S$ be an integral extension of domains. Then R is a field if and only if S is a field.

DEFINITION: Let A be a ring, and R be an A-algebra. The **integral closure** of A in R is the set of elements in R that are integral over A.

(1) Proof of Theorem:

- (a) Very briefly explain why, to prove that module-finite implies integral in general, it suffices to show the claim for an inclusion $A \subseteq R$.
- (b) Take a module generating set $\{1, r_2, \ldots, r_n\}$ for R as an A-module, and write it as a row vector $v = \begin{bmatrix} 1 & r_2 & \cdots & r_n \end{bmatrix}$. Let $x \in R$. Explain why there is a matrix $M \in Mat_{n \times n}(A)$ such that vM = xv.
- (c) Apply a TRICK to obtain a monic polynomial over A that x satisfies.
- (d) Combine the previous parts with results from last time to complete the proof of the Theorem.
- (2) Let $R = \mathbb{C}[X, X^{1/2}, X^{1/3}, \ldots] \subseteq \overline{\mathbb{C}(X)}$, where $X^{1/n}$ is an *n*th root of X. Is $\mathbb{C}[X] \subseteq R$ integral¹? Is it module-finite? Is it algebra-finite?
- (3) Proof of Corollary 1: Let R be an A-algebra.
 - (a) If $x, y \in R$ are integral over A, explain why $A[x, y] \subseteq R$ is integral over A. Now explain why $x \pm y$ and xy are integral over A.
 - (b) Deduce that the integral closure of A in R is a ring, and moreover an A-subalgebra of R.
 - (c) Now let S be a set of integral elements. Apply (b) to the ring R = A[S] in place of R. Complete the proof of the Corollary.
- (4) Proof of Proposition:
 - (a) First, assume that S is a field, and let $r \in R$ be nonzero. Explain why r has an inverse in S.
 - (b) Take an integral equation for $r^{-1} \in S$ over R, and solve for r^{-1} in terms of things in R. Deduce that R must also be a field.
 - (c) Now, assume that R is a field, and that S is a domain, and let $s \in S$ be nonzero. Explain why R[s] is a finite-dimensional vector space.
 - (d) Explain why the multiplication by s map from R[s] to itself is surjective. Deduce that S must also be a field.
- (5) Prove Corollary 2.

¹You might find the Corollary helpful.

(6) Let $A = \mathbb{C}[X, Y]$ be a polynomial ring, and $R = \frac{\mathbb{C}[X, Y, U, V]}{(U^2 - UX + 3X^3, V^2 - 7Y)}$. Find an equation of integral dependence for U + V over A.

DEFINITION: Let R be a domain. The **normalization** of R is the integral closure of R in Frac(R). We say that R is **normal** if it is equal to its normalization, i.e., if R is integrally closed in its fraction field.

PROPOSITION: If R is a UFD, then R is normal.

LEMMA: A domain is a UFD if and only if

- (1) Every nonzero element has a factorization¹ into irreducibles, and
- (2) Every irreducible element generates a prime ideal.

THEOREM: If R is a UFD, then the polynomial ring R[X] is a UFD.

- (1) Use the results above to explain why $K[X_1, \ldots, X_n]$ (with K a field) and $\mathbb{Z}[X_1, \ldots, X_n]$ are normal.
- (2) Prove the Proposition above.
- (3) Let K be a module-finite field extension of \mathbb{Q} . The **ring of integers** in K, sometimes denoted \mathcal{O}_K , is the integral closure of \mathbb{Z} in K.
 - (a) What is the ring of integers in $\mathbb{Q}(\sqrt{2})$?
 - **(b)** For $L = \mathbb{Q}(\sqrt{-3})$, show that $\frac{1+\sqrt{-3}}{2} \in \mathcal{O}_L$. In particular, $\mathcal{O}_L \neq \mathbb{Z}[\sqrt{-3}]$.
 - (c) Explain why \mathcal{O}_K is normal.
 - (d) Explain why, if $\mathbb{Z} \subseteq \mathcal{O}_K$ is algebra-finite, then $\mathcal{O}_K \cong \mathbb{Z}^n$ as abelian groups for some $n \in \mathbb{N}$.
 - (e) Do we have a theorem that implies $\mathbb{Z} \subseteq \mathcal{O}_K$ is algebra-finite?
- (4) Discuss the proof of the Lemma above.
- (5) Let K be a field, and $R = K[X^2, XY, Y^2] \subseteq K[X, Y]$. Prove² that R is not a UFD, but R is normal.
- (6) Prove the Theorem above. You might find it useful to recall the following: GAUSS' LEMMA: Let R be a UFD and let K be the fraction field of R.
 - (a) $f \in R[X]$ is irreducible if and only if f is irreducible in K[X] and the coefficients of f have no common factor.
 - (b) Let $r \in R$ be irreducible, and $f, g \in R[X]$. If r divides every coefficient of fg, then either r divides every coefficient of f, or r divides every coefficient of g.
- (7) Let R be a normal domain, and s be an element of some domain $S \supseteq R$. Let K be the fraction field of R. Show that if s is integral over R, then the minimal polynomial of s has all of its coefficients in R.

 $[\]overline{{}^{1}$ i.e., for any $r \in R$, there exists a unit u and a finite (possibly empty) list of irreducibles a_1, \ldots, a_n such that $r = ua_1 \cdots a_n$. ²Hint: Use K[X, Y] to your advantage.

DEFINITION: A ring R is **Noetherian** if every ascending chain of ideals $I_1 \subseteq I_2 \subseteq I_3 \subseteq \cdots$ eventually stabilizes: i.e., there is some N such that $I_n = I_N$ for all $n \ge N$.

HILBERT BASIS THEOREM: If R is a Noetherian ring, then the polynomial ring R[X] and power series ring R[X] are also Noetherian.

We will return to the proof of Hilbert Basis Theorem after discussing Noetherian modules next time.

COROLLARY: Every finitely generated algebra over a field is Noetherian.

- (1) Equivalences for Noetherianity.
 - (a) Show¹ that R is Noetherian if and only if every ideal is finitely generated.
 - (b) Show² that R is Noetherian if and only if every nonempty collection of ideals has a maximal³ element.
- (2) Some Noetherian rings:
 - (a) Show that fields and PIDs are Noetherian.
 - **(b)** Show that if R is Noetherian and $I \subseteq R$, then R/I is Noetherian.
 - (c) Is⁴ every subring of a Noetherian ring Noetherian?
- (3) Use the Hilbert Basis Theorem to deduce the Corollary.
- (4) Some nonNoetherian rings:
 - (a) Let K be a field. Show that $K[X_1, X_2, ...]$ is not Noetherian.
 - (b) Let K be a field. Show that $K[X, XY, XY^2, ...]$ is not Noetherian.
 - (c) Show that $\mathcal{C}([0,1],\mathbb{R})$ is not Noetherian.
- (5) Let R be a Noetherian ring. Show that for every ideal I, there is some n such that $\sqrt{I}^n \subseteq I$. In particular, there is some n such that for every nilpotent element $z, z^n = 0$.
- (6) Let R be Noetherian. Show that every element of R admits a decomposition into irreducibles.
- (7) Prove the principle of **Noetherian induction**: Let \mathcal{P} be a property of a ring. Suppose that "For every nonzero ideal I, \mathcal{P} is true for R/I implies that \mathcal{P} is true for R" and \mathcal{P} holds for all fields. Then \mathcal{P} is true for every Noetherian ring.
- (8) (a) Suppose that every maximal ideal of R is finitely generated. Must R be Noetherian?
 - (b) Suppose that every ascending chain of prime ideals stabilizes. Must R be Noetherian?
 - (c) Suppose that every prime ideal of R is finitely generated. Must R be Noetherian?

¹For the backward direction, consider $\bigcup_{n \in \mathbb{N}} I_n$

²Hint: For the forward direction, show the contrapositive.

³This means that if S is our collection of ideals, there is some $I \in S$ such that no $J \in S$ properly contains I. It does not mean that there is a maximal ideal in S.

⁴Hint: Every domain has a fraction field, even the domain from (4a).

DEFINITION: A module is **Noetherian** if every ascending chain of submodules $M_1 \subseteq M_2 \subseteq M_3 \subseteq \cdots$ eventually stabilizes: i.e., there is some N such that $M_n = M_N$ for all $n \ge N$.

THEOREM: If R is a Noetherian ring, then an R-module M is Noetherian if and only M is finitely generated.

COROLLARY: If R is a Noetherian ring, then a submodule of a finitely generated R-module is finitely generated.

LEMMA: Let M be an R-module and $N \subseteq M$ a submodule. Let L, L' be two more submodules of M. Then L = L' if and only if $L \cap N = L' \cap N$ and $\frac{L+N}{N} = \frac{L'+N}{N}$.

- (1) Equivalences for Noetherianity.
 - (a) Explain why M is Noetherian if and only if every submodule of M is finitely generated.
 - (b) Explain why M is Noetherian if and only if every nonempty collection of submodules has a maximal element.
- (2) Submodules and quotient modules: Let $N \subseteq M$.
 - (a) Show that if M is a Noetherian R-module, then N is a Noetherian R-module.
 - (b) Show that if M is a Noetherian R-module, then M/N is a Noetherian R-module.
 - (c) Use the Lemma above to show that if N and M/N are Noetherian R-modules, then M is a Noetherian R-module.
- (3) Proof of Theorem: Let R be a Noetherian ring.
 - (a) Explain why R is a Noetherian R-module.
 - **(b)** Show that R^n is a Noetherian *R*-module for every *n*.
 - (c) Deduce the Theorem above.
 - (d) Deduce the Corollary above.
- (4) Proof of Hilbert Basis Theorem for R[X]: Let R be a Noetherian ring.
 - (a) Let I be an ideal of R[X]. Given a nonzero element $f \in R[X]$, set LT(f) to be the leading coefficient¹ of f and LT(0) = 0, and let $LT(I) = \{LT(f) \mid f \in I\}$. Is LT(I) an ideal of R?
 - **(b)** Let $f_1, \ldots, f_n \in R[X]$ be such that $LT(f_1), \ldots, LT(f_n)$ generate LT(I). Let N be the maximum of the top degrees of f_i . Show that every element of I can be written as $\sum_i r_i f_i + g$ with $r_i, g \in R[X]$ and the top degree of $g \in I$ is less than N.
 - (c) Write $R[X]_{<N}$ for the *R*-submodule of R[X] consisting of polynomials with top degree < N. Show that $I \cap R[X]_{<N}$ is a finitely generated *R*-module.
 - (d) Complete the proof of the Theorem.
- (5) Proof of Hilbert Basis Theorem for R[X]: How can you modify the Proof of Hilbert Basis Theorem for R[X] to work in the power series case? Make it happen!
- (6) Prove the Lemma.
- (7) Noetherianity and module-finite inclusions: Let $R \subseteq S$ be module-finite.
 - (a) Without using the Hilbert Basis Theorem, show that is R is Noetherian, then S is Noetherian.
 - (b) EAKIN-NAGATA THEOREM: Show that if S is Noetherian, then R is Noetherian.

¹That is, if $f = \sum_{i} a_i X^i$ and $k = \max\{i \mid a_i \neq 0\}$, then $LT(f) = a_k$.

DEFINITION:

- (1) An \mathbb{N} -grading on a ring R is
 - a decomposition of R as additive groups $R = \bigoplus_{d>0} R_d$
 - such that $x \in R_d$ and $y \in R_e$ implies $xy \in R_{d+e}$.
- (2) An \mathbb{N} -graded ring is a ring with an \mathbb{N} -grading.
- (3) We say that an element $x \in R$ in an \mathbb{N} -graded ring R is homogeneous of degree d if $x \in R_d$.
- (4) The homogeneous decomposition of an element $r \neq 0$ in an N-graded ring is the sum

 $r = r_{d_1} + \cdots + r_{d_k}$ where $r_{d_i} \neq 0$ homogeneous of degree d_i and $d_1 < \cdots < d_k$.

The element r_{d_i} is the homogeneous component r of degree d_i .

- (5) An ideal I in an \mathbb{N} -graded ring is **homogeneous** if $r \in I$ implies every homogeneous component of r is in I. Equivalently, I is homogeneous if can be generated by homogeneous elements.
- (6) A homomorphism $\phi : R \to S$ between \mathbb{N} -graded rings is graded if $\phi(R_d) \subseteq S_d$ for all $d \in \mathbb{N}$.

DEFINITION: For an abelian semigroup (G, +), one defines G-grading as above with G in place of \mathbb{N} and $g \in G$ in place of $d \ge 0$. The other definitions above make sense in this context.

DEFINITION: Let K be a field, and $R = K[X_1, ..., X_n]$ be a polynomial ring. Let G be a group acting on R so that for every $g \in G$, $r \mapsto g \cdot r$ is a K-algebra homomorphism. The **ring of invariants** of G is

$$R^G := \{ r \in R \mid \text{for all } g \in G, \ g \cdot r = r \}.$$

- (1) Basics with graded rings: Let R be an \mathbb{N} -graded ring.
 - (a) If $f \in R$ is homogeneous of degree a and $g \in R$ is homogeneous of degree b, what about f + g and fg?
 - (b) Translate the definition of graded ring to explain why every nonzero element has a unique homogeneous decomposition.
 - (c) Does every element in R have a degree? What about "top degree" or "bottom degree"?
 - (d) What is the¹ degree of zero?
 - (e) Suppose that $r \in (s_1, \ldots, s_m)$, and r is homogeneous of degree d, and s_i is homogeneous of degree d_i . Explain why we can write $r = \sum_i a_i s_i$ with $a_i \in R$ homogeneous of degree $d d_i$.
- (2) The standard grading on a polynomial ring: Let A be a ring.
 - (a) Let R = A[X]. Discuss: the decomposition $R_d = A \cdot X^d$ gives an \mathbb{N} -grading on R.
 - **(b)** Let $R = A[X_1, \ldots, X_n]$. Discuss: the decomposition

$$R_d = \sum_{d_1 + \dots + d_n = d} A \cdot X_1^{d_1} \cdots X_m^{d_m}$$

gives an \mathbb{N} -grading on R. What is the homogeneous decomposition of $f = X_1^3 + 2X_1X_2 - X_3^2 + 3$? (c) Let R = A[X]. Explain why $R_n = A \cdot X^n$ does not give an \mathbb{N} -grading on R.

- (3) Weighted gradings on polynomial rings: Let A be a ring, R = A[X₁,...,X_n] and a₁,..., a_m ∈ N.
 (a) Discuss: R_n = ∑ A · X₁^{d₁} ··· X_m^{d_m} gives an N-grading of R where the degree of X_i is a_i.
 - (b) Can you find a_1, a_2, a_3 such that $X_1^2 + X_2^3 + X_3^5$ is homogeneous? Of what degree?

¹Hint: This is a trick question, but specify exactly how.

(4) The fine grading on polynomial rings: Let A be a ring and $R = A[X_1, \ldots, X_n]$. Discuss why

$$R_d = A \cdot X^d$$
 for $d = (d_1, \dots, d_m) \in \mathbb{N}^n$, where $X^d := X_1^{d_1} \cdots X_m^{d_m}$

yields an \mathbb{N}^m -grading on R. What are the homogeneous elements?

- (5) More basics with graded rings. Let R be \mathbb{N} -graded.
 - (a) Show² that if $e \in R$ is idempotent, then e is homogeneous of degree zero. In particular, 1 is homogeneous of degree zero.
 - (b) Show that R_0 is a subring of R, and each R_n is an R_0 -module.
 - (c) Show that if I is homogeneous, then R/I is also \mathbb{N} -graded where $(R/I)_n$ consists of the classes of homogeneous elements of R of degree n.
 - (d) Show that I is homogeneous if and only if I is generated by homogeneous elements.
 - (e) Suppose that $\phi : R \to S$ is a homomorphism of K-algebras, and that R and S are N-graded with K contained in R_0 and S_0 . Show that ϕ is graded if ϕ preserves degrees for all of the elements in some homogeneous generating set of R.
- (6) Semigroup rings: Let S be a subsemigroup of \mathbb{N}^n with operation + and identity $(0, \ldots, 0)$. The **semigroup ring** of S is

$$K[S] := \sum_{\alpha \in S} K X^{\alpha} \subseteq R, \qquad \text{where } X^{\alpha} := X_1^{\alpha_1} \cdots X_n^{\alpha_n}.$$

- (a) Show that K[S] is a K-subalgebra that is a graded subring of R in the fine grading.
- (b) Let $S = \langle 4, 7, 9 \rangle \subseteq \mathbb{N}$. Draw a picture of S. What is K[S]?
- (c) Find a semigroup $S \subseteq \mathbb{N}^2$ such that K[S] is Noetherian, and another such that K[S] is not Noetherian. Draw pictures of these semigroups.
- (d) Show that every K-subalgebra that is a graded subring of R in the fine grading is of the form K[S] for some S.
- (7) Homogeneous elements: Let R be an \mathbb{N} -graded ring.
 - (a) Show that R is a domain if and only if for all homogeneous elements x, y, xy = 0 implies x = 0 or y = 0.
 - (b) Show that the radical of a homogeneous ideal is homogeneous.
- (8) In the setting of the definition of "ring of invariants" suppose that each $g \in G$ acts as a graded homomorphism. Show that R^G is an \mathbb{N} -graded K-subalgebra of R.

²Hint: If not, write $e = e_0 + e_d + X$ where e_0 has degree zero and e_d is the lowest nonzero positive degree component. Apply uniqueness of homogeneous decomposition to $e^2 = e$ and show that $2e_0e_d = e_0e_d...$

DEFINITION: Let R be an \mathbb{N} -graded ring with graded pieces R_i . A \mathbb{Z} -grading on an R-module M is

- a decomposition of M as additive groups $M = \bigoplus_{e \in \mathbb{Z}} M_e$
- such that $r \in R_d$ and $m \in M_e$ implies $rm \in M_{d+e}$.

An \mathbb{Z} -graded module is a module with a \mathbb{Z} -grading. As with rings, we have the notions of homogeneous elements of M, the degree of a homogeneous element, homogeneous decomposition of an arbitrary element of M. A homomorphism $\phi : M \to N$ between graded modules is degree-preserving if $\phi(M_e) \subseteq N_e$.

GRADED NAK 1: Let R be an \mathbb{N} -graded ring, and R_+ be the ideal generated by the homogeneous elements of positive degree. Let M be a \mathbb{Z} -graded module. Suppose that $M_{\ll 0} = 0$; that is, there is some $n \in \mathbb{Z}$ such that $M_t = 0$ for $t \leq n$. Then $M = R_+M$ implies M = 0.

GRADED NAK 2: Let R be an N-graded ring and M be a Z-graded module with $M_{\ll 0} = 0$. Let N be a graded submodule of M. Then $M = N + R_+M$ if and only if M = N.

GRADED NAK 3: Let R be an \mathbb{N} -graded ring and M be a \mathbb{Z} -graded module with $M_{\ll 0} = 0$. Then a set of homogeneous elements $S \subseteq M$ generates M if and only if the image of S in M/R_+M generates M/R_+M as a module over $R_0 \cong R/R_+$.

DEFINITION: Let R be an \mathbb{N} -graded ring with $R_0 = K$ a field. Let M be a a \mathbb{Z} -graded module with $M_{\ll 0} = 0$. A set S of homogeneous elements of M is a **minimal generating set** for M if the image of S in M/R_+M is an K-vector space basis.

- (1) Warmup with minimal generating sets.
 - (a) Note that the definition of "minimal generating set" does not say that it is a generating set. Use Graded NAK 3 to explain why it is!
 - (b) Let K be a field and S = K[X, Y]. Verify that $\{X^2, XY, Y^2\}$ is a minimal generating set of the ideal I it generates in S.
 - (c) Let K be a field. Find a minimal generating set of S = K[X, Y] as a module over the K-subalgebra R = K[X + Y, XY].
- (2) Proofs of graded NAKs:
 - (a) Prove Graded NAK 1.
 - **(b)** Use Graded NAK 1 to prove Graded NAK 2.
 - (c) Use Graded NAK 2 to prove Graded NAK 3.
- (3) The hypotheses:
 - (a) Examine your proofs from the previous problem and verify that one direction (each) of Graded NAK 2 and Graded NAK 3 hold without assuming that R or M is graded.
 - (b) Let K be a field and R = K[X] with the standard grading. Let M = K[X]/(X 1). Analyze the hypotheses and conclusion of Graded NAK 1 for this example.
 - (c) Let K be a field and R = K[X] with the standard grading. Let $M = K[X, X^{-1}]$. Analyze the hypotheses and conclusion of Graded NAK 1 for this example.
 - (d) Find counterexamples to Graded NAK 3 with M is not graded or not bounded below in degree.

- (4) Minimal generating sets: Let R be an N-graded ring with $R_0 = K$ a field. Let M be a a \mathbb{Z} -graded module with $M_{\ll 0} = 0$.
 - (a) Explain why every minimal generating set for M has the same cardinality.
 - (b) Explain why every homogeneous generating set for M contains a minimal generating set for M. Moreover, explain why any generating set (homogeneous or not) has cardinality at least that of a minimal generating set.
 - (c) Explain why "minimal generating set" is equivalent to "homogeneous generating set such that no proper subset generates".
 - (d) Give an example of a finitely generated module N over K[X, Y] and two generating set S_1, S_2 for N such that no proper subset of S_i generates N, but $|S_1| \neq |S_2|$. Compare to the statements above.
- (5) Let R be an \mathbb{N} -graded ring with $R_0 = K$ a field. Suppose that $R_{\text{red}} = R/\sqrt{0}$ is a domain, and that $f \in R$ is a homogeneous nonnilpotent element of positive degree. Show that R/(f) is reduced implies that R is a reduced, and hence a domain.

HILBERT'S FINITENESS THEOREM: Let K be a field of characteristic zero, and $R = K[X_1, \ldots, X_n]$ be a polynomial ring. Let G be a finite group acting on R by degree-preserving K-algebra automorphisms. Then the invariant ring R^G is algebra-finite over K.

THEOREM: Let R be an \mathbb{N} -graded ring. Then R is Noetherian if and only if R_0 is Noetherian and R is algebra-finite over R_0 .

DEFINITION: Let $R \subseteq S$ be an inclusion of rings. We say that R is a **direct summand** of S if there is an R-module homomorphism $\pi : S \to R$ such that $\pi|_R = \mathbb{1}_R$.

PROPOSITION: A direct summand of a Noetherian ring is Noetherian.

LEMMA: Let R be a polynomial ring over a field K. If G is a group acting on R by degree-preserving K-algebra automorphisms, then

- (1) R^G is an \mathbb{N} -graded K-subalgebra of R with $(R^G)_0 = K$.
- (2) If in addition, G is finite, and |G| is invertible in K, then R^G is a direct summand of R.

(1) Use the Lemma, Proposition, and Theorem to deduce Hilbert's finiteness Theorem.

- (2) Proof of Theorem:
 - (a) Explain the direction (\Leftarrow) .
 - **(b)** Show that R Noetherian implies R_0 is Noetherian.
 - (c) Let f_1, \ldots, f_t be a homogeneous generating set for R_+ , the ideal generated by positive degree elements of R. Show¹ by (strong) induction on d that every element of R_d is contained in $R_0[f_1, \ldots, f_t]$.
 - (d) Conclude the proof of the Theorem.
- (3) Proof of Proposition:
 - (a) Show that if R is a direct summand of S, and I is an ideal of R, then $IS \cap R = I$.
 - **(b)** Complete the proof of the proposition.
- (4) Proof of Lemma part (2): Consider $r \mapsto \frac{1}{|G|} \sum_{g \in G} g \cdot r$.
- (5) Let S_3 denote the symmetric group on 3 letters, and let S_3 act on $R = \mathbb{C}[X_1, X_2, X_3]$ by permuting variables; i.e., σ is the \mathbb{C} -algebra homomorphism given by $\sigma \cdot X_i = X_{\sigma(i)}$. Show² that

$$R^{\mathcal{S}_3} = \mathbb{C}[X_1 + X_2 + X_3, X_1X_2 + X_1X_3 + X_2X_3, X_1X_2X_3]$$

and that $X_1 + X_2 + X_3$, $X_1X_2 + X_1X_3 + X_2X_3$, $X_1X_2X_3$ are algebraically independent over \mathbb{C} . What about replacing 3 with n?

(6) Show that a direct summand of a normal ring is normal.

¹Hint: Start by writing $h \in R_d$ as $h = \sum_i r_i f_i$ with $d = \deg(r_i) + \deg(f_i)$ for all i.

²Hint: Order the monomials of *R* by lexicographic (dictionary) order. Given a homogeneous invariant, can you find an element of $\mathbb{C}[X_1 + X_2 + X_3, X_1X_2 + X_1X_3 + X_2X_3, X_1X_2X_3]$ with the same "first" monomial in that order?

DEFINITION: Let R be a ring and I be an ideal. The **Rees ring** of I is the \mathbb{N} -graded R-algebra

$$R[IT] := \bigoplus_{d \ge 0} I^d T^d = R \oplus IT \oplus I^2 T^2 \oplus \cdots$$

with multiplication determined by $(aT^d)(bT^e) = abT^{d+e}$ for $a \in I^d$, $b \in I^e$ (and extended by the distributive law for nonhomogeneous elements). Here I^n means the *n*th power of the ideal I in R, and T is an indeterminate. Equivalently, R[IT] is the R-subalgebra of the polynomial ring R[T] generated by IT, with R[T] is given the standard grading $R[T]_d = R \cdot T^d$.

DEFINITION: Let R be a ring and I be an ideal. The **associated graded ring** of I is the \mathbb{N} -graded ring

$$\operatorname{gr}_{I}(R) := \bigoplus_{d \ge 0} (I^{d}/I^{d+1})T^{d} = R/I \oplus (I/I^{2})T \oplus (I^{2}/I^{3})T^{2} \oplus \cdots$$

with multiplication determined by $(a + I^{d+1}T^d)(b + I^{e+1}T^e) = ab + I^{d+e+1}T^{d+e}$ for $a \in I^d$, $b \in I^e$ (and extended by the distributive law). For an element $r \in R$, its **initial form** in gr_I(R) is

$$r^* := \begin{cases} (r+I^{d+1})T^d & \text{if } r \in I^d \smallsetminus I^{d+1} \\ 0 & \text{if } r \in \bigcap_{n \ge 0} I^n. \end{cases}$$

ARTIN-REES LEMMA: Let R be a Noetherian ring, I an ideal of R, M a finitely generated module, and $N \subseteq M$ a submodule. Then there is a constant¹ $c \geq 0$ such that for all $n \geq c$, we have $I^n M \cap N \subseteq I^{n-c}N$.

- (1) Warmup with Rees rings:
 - (a) Let R be a ring and I be an ideal. Show that if $I = (a_1, \ldots, a_n)$, then $R[IT] = R[a_1T, \ldots, a_nT]$.
 - (b) Let K be a field, R = K[X, Y] and I = (X, Y). Find K-algebra generators for R[IT], and find a relation on these generators.
- (2) Warmup with associated graded rings:
 - (a) Convince yourself that the multiplication given in the definition of $gr_I(R)$ is well-defined. After doing this, do *not* use coset notation for elements of $gr_I(R)$ and instead write a typical homogeneous element as something like $\bar{r} T^d$.
 - (b) Let K be a field, R = K[X, Y], and $\mathfrak{m} = (X, Y)$. Show that $\operatorname{gr}_{\mathfrak{m}}(R)_d \cong R_d$ as K-vector spaces, and construct a ring isomorphism $\operatorname{gr}_{\mathfrak{m}}(R) \cong R$.
 - (c) For the same R, show that the map $R \to \operatorname{gr}_{\mathfrak{m}}(R)$ given by $r \mapsto r^*$ is not a ring homomorphism.
 - (d) Let K be a field, R = K[X, Y], and $\mathfrak{m} = (X, Y)$. Show² that $\operatorname{gr}_{\mathfrak{m}}(R) \cong K[X, Y]$.
 - (e) What happens in (b) and (d) if we have n variables instead of 2?
- (3) Consider the special case of Artin-Rees where M = R, and I = (f) and N = (g).
 - (a) What does Artin-Rees say in this setting? Express your answer in terms of "divides".
 - (b) Take $R = \mathbb{Z}$. Does c = 0 "work" for every $f, g \in \mathbb{Z}$? Can you find a sequence of examples requiring arbitrarily large values of c?

¹The constant c depends on I, M, and N but works for all n.

²Yes, the brackets changed. This is not a typo!

- (4) Proof of Artin-Rees: Let R be a Noetherian ring, and I be an ideal.
 - (a) Explain why R[IT] is a Noetherian ring.
 - (b) Let $M = \sum_{i} Rm_{i}$ be a finitely generated R-module. Set $\mathcal{M} := \bigoplus_{n \ge 0} I^{n}MT^{n}$. Show that this is a graded R[IT]-module, and that $\mathcal{M} = \sum_i R[IT] \cdot m_i$, where in the last equality we consider m_i as the element $m_i T^0 \in \mathcal{M}_0$.
 - (c) Given a submodule N of M, set $\mathcal{N} := \bigoplus_{n \ge 0} (I^n M \cap N) T^n \subseteq \mathcal{M}$. Show that \mathcal{N} is a graded R[IT]-submodule of \mathcal{M} .
 - (d) Show that there exist $n_1, \ldots, n_k \in N$ and $c_1, \ldots, c_k \ge 0$ such that $\mathcal{N} = \sum_j R[It] \cdot n_j T^{c_j}$.
 - (e) Show that $c := \max\{c_i\}$ satisfies the conclusion of the Artin-Rees Lemma.
- (5) Presentations of associated graded rings: Let R be a ring and I, J be ideals. Set $in_I(J)$ to be the ideal of $\operatorname{gr}_{I}(R)$ generated by $\{a^* \mid a \in J\}$.
 - (a) Show that $\operatorname{gr}_{I}(R/J) \cong \operatorname{gr}_{I}(R)/\operatorname{in}(J)$.
 - (b) If J = (f) is a principal ideal, show that $in_I(J) = (f^*)$.

 - (c) Is $\operatorname{in}_{I}((f_{1}, \ldots, f_{t})) = (f_{1}^{*}, \ldots, f_{t}^{*})$ in general? (d) Compute $\operatorname{gr}_{(x,y,z)}\left(\frac{K\llbracket X, Y, Z\rrbracket}{(X^{2} + XY + Y^{3} + Z^{7})}\right)$.
- (6) Properties of associated graded rings: Let R be a ring and I be an ideal such that $\bigcap_{n>0} I^n = 0$.
 - (a) Show that if $gr_I(R)$ is a domain, then so is R.
 - (b) Show that if $gr_I(R)$ is reduced, then so is R.
 - (c) What about the converses of these statements?
- (7) Show that for the ideal $I = (X, Y)^2$ in R = K[X, Y], the Rees ring R[IT] has defining relations of degree greater than one.

NOETHER NORMALIZATION: Let K be a field, and R be a finitely-generated K-algebra. Then there exists a finite¹ set of elements $f_1, \ldots, f_m \in R$ that are algebraically independent over K such that $K[f_1, \ldots, f_m] \subseteq R$ is module-finite; equivalently, there is a module-finite injective K-algebra map from a polynomial ring $K[X_1, \ldots, X_m] \hookrightarrow R$. Such a ring S is called a **Noether normalization** for R.

LEMMA: Let A be a ring, and $F \in R := A[X_1, \ldots, X_n]$ be a nonzero polynomial. Then there exists an A-algebra automorphism ϕ of R such that $\phi(F)$, viewed as a polynomial in X_n with coefficients in $A[X_1, \ldots, X_{n-1}]$, has top degree term aX_n^t for some $a \in A \setminus 0$ and $t \ge 0$.

- If A = K is an infinite field, one can take $\phi(X_n) = X_n$ and $\phi(X_i) = X_i + \lambda_i X_n$ for some $\lambda_1, \ldots, \lambda_{n-1} \in K$.
- In general, if the top degree of F (with respect to the standard grading) is D, one can take $\phi(X_n) = X_n$ and $\phi(X_i) = X_i + X_n^{D^{n-i}}$ for i < n.

ZARISKI'S LEMMA: An algebra-finite extension of fields is module-finite.

USEFUL VARIATIONS ON NOETHER NORMALIZATION:

- NN FOR DOMAINS: Let $A \subseteq R$ be an algebra-finite inclusion of domains². Then there exists $a \in A \setminus 0$ and $f_1, \ldots, f_m \in R[1/a]$ that are algebraically independent over A[1/a] such that $A[1/a][f_1, \ldots, f_m] \subseteq R[1/a]$ is module-finite.
- GRADED NN: Let K be an infinite field, and R be a standard graded K-algebra. Then there exist algebraically independent elements $L_1, \ldots, L_m \in R_1$ such that $K[L_1, \ldots, L_m] \subseteq R$ is module-finite.
- NN FOR POWER SERIES: Let K be an infinite field, and R = K [[X₁,...,X_n]]/I. Then there exists a module-finite injection K [[Y₁,...,Y_m]] → R for some power series ring in m variables.
- (1) Examples of Noether normalizations: Let K be a field.
 - (a) Show that K[x, y] is a Noether normalization of $R = \frac{K[X, Y, Z]}{(X^3 + Y^3 + Z^3)}$, where x, y are the classes of X and Y in R, respectively.
 - (b) Show that K[x] is *not* a Noether normalization of $R = \frac{K[X,Y]}{(XY)}$. Then show that $K[x+y] \subseteq R$ is a Noether normalization.
 - (c) Show that $K[X^4, Y^4]$ is a Noether normalization for $R = K[X^4, X^3Y, XY^3, Y^4]$.
- (2) Use Noether Normalization³ to prove Zariski's Lemma.

¹Possibly empty!

²The assumption that R is a domain is actually not necessary, but can't quite state the general statement yet. We assume that R is a domain so that there is fraction field of R in which to take R[1/a].

³and a suitable fact about integral extensions...

- (3) Proof of Noether Normalization (using the Lemma): Proceed by induction on the number of generators of R as a K-algebra; write $R = K[r_1, \ldots, r_n]$.
 - (a) Deal with the base case n = 0.
 - (b) For the inductive step, first do the case that r_1, \ldots, r_n are algebraically independent over K.
 - (c) Let $\alpha : K[X_1, \ldots, X_n] \to R$ be the K-algebra homomorphism such that $\alpha(X_i) = r_i$, and let ϕ be a K-algebra automorphism of $K[X_1, \ldots, X_n]$. Let $r'_i = \alpha(\phi(X_i))$ for each *i*. Explain⁴ why $R = K[r'_1, \ldots, r'_n]$, and for any K-algebra relation F on r_1, \ldots, r_n , the polynomial $\phi^{-1}(F)$ is a K-algebra relation on r'_1, \ldots, r'_n .
 - (d) Use the Lemma to find a K-subalgebra R' of R with n-1 generators such that the inclusion $R' \subseteq R$ is module-finite.
 - (e) Conclude the proof.
- (4) Proof of the "general case" of the Lemma:
 - (a) Where do "base D expansions" fit in this picture?
 - (b) Consider the automorphism ϕ from the general case of the Lemma. Show that for a monomial, we have $\phi(aX_1^{d_1}\cdots X_n^{d_n})$ is a polynomial with unique highest degree term $aX_n^{d_1D^{n-1}+d_2D^{n-2}+\cdots+d_n}$.
 - (c) Can two monomials μ, ν in F, have $\phi(\mu)$ and $\phi(\nu)$ with the same highest degree term?
 - (d) Complete the proof.
- (5) Variations on NN.
 - (a) Adapt the proof of NN to show Graded NN.
 - (b) Adapt the proof of NN to show NN for domains.
 - (c) Adapt the proof of NN to show NN for power series.

⁴Say α' is the K-algebra map given by $\alpha'(X_i) = r'_i$. Observe that $\alpha' = \alpha \circ \phi$. Why is this surjective?

DEFINITION: Let K be a field and $R = K[X_1, \ldots, X_n]$. For a set of polynomials $S \subseteq R$, we define the **zero-set** of solution set of S to be

$$\mathcal{Z}(S) := \{ (a_1, \dots, a_n) \in K^n \mid F(a_1, \dots, a_n) = 0 \text{ for all } F \in S \}.$$

NULLSTELLENSATZ: Let K be an algebraically closed field, and $R = K[X_1, \ldots, X_n]$ be a polynomial ring. Let $I \subseteq R$ be an ideal. Then $\mathcal{Z}(I) = \emptyset$ if and only if I = R is the unit ideal. Put another way, a set S of multivariate polynomials has a common zero unless there is a "certificate of infeasibility" consisting of $f_1, \ldots, f_t \in S$ and $r_1, \ldots, r_t \in R$ such that $\sum_i r_i s_i = 1$.

PROPOSITION: Let K be an algebraically closed field, and $R = K[X_1, \ldots, X_n]$ be a polynomial ring. Every maximal ideal of R is of the form $\mathfrak{m}_{\alpha} = (X_1 - a_1, \ldots, X_n - a_n)$ for some point $\alpha = (a_1 \ldots, a_n) \in K^n$.

- (1) Draw the "real parts" of $\mathcal{Z}(X^2 + Y^2 1)$ and of $\mathcal{Z}(XY, XZ)$.
- (2) Explain why the Nullstellensatz is definitely false if K is assumed to *not* be algebraically closed.
- (3) Basics of \mathcal{Z} : Let $R = K[X_1, \dots, X_n]$ be a polynomial ring.
 - (a) Explain why, for any system of polynomial equations $F_1 = G_1, \ldots, F_m = G_m$, the solution set can be written in the form $\mathcal{Z}(S)$ for some set S.
 - **(b)** Let $S \subseteq T$ be two sets of polynomials. Show that $\mathcal{Z}(S) \supseteq \mathcal{Z}(T)$.
 - (c) Let I = (S). Show that $\mathcal{Z}(I) = \mathcal{Z}(S)$. Thus, every solution set system of any polynomial equations can be written as \mathcal{Z} of some ideal.
 - (d) Explain the following: every system of equations over a polynomial ring is equivalent to a *finite* system of equations.
- (4) Proof of Proposition and Nullstellensatz: Let K be an algebraically closed field, and
 - $R = K[X_1, \ldots, X_n]$ be a polynomial ring.
 - (a) Use Zariski's Lemma to show that for every maximal ideal $\mathfrak{m} \subseteq R$, we have $R/\mathfrak{m} \cong K$.
 - **(b)** Reuse some old work to deduce the Proposition.
 - (c) Deduce the Nullstellensatz from the Proposition.
 - (d) Convince yourself that the "certificate of infeasibility" version follows from the other one.
- (5) Given a system of polynomial equations and inequations

 (\star) $F_1 = 0, \dots, F_m = 0$ $G_1 \neq 0, \dots, G_\ell \neq 0$

come up with a system¹ of equations (†) *in one extra variable* such that (\star) has a solution if and only if (†) has a solution. Thus every equation-and-inequation feasibility problem is equivalent to a question of the form $\mathcal{Z}(I) \stackrel{?}{=} \emptyset$.

¹Hint: $\lambda \in K$ is nonzero if and only if there is some μ such that $\lambda \mu = 1$.

- (6) Show that any system of multivariate polynomial equations (or equations and inequations) over a field K has a solution in some extension field of L if and only if it has a solution over \overline{K} .
- (7) Let K be a field and $R = K[X_1, \ldots, X_n]$. Let $L \supseteq K$ and $S = L[X_1, \ldots, X_n]$.
 - (a) Find some f that is irreducible in R but reducible in S for some choice of $K \subseteq L$.
 - (b) Show that if K is algebraically closed and $f \in R$ is irreducible, then it is irreducible in S.
 - (c) Show that if K is algebraically closed and $I \subseteq R$ is prime, then IS is prime.
- (8) Show that the statement of the Nullstellensatz holds for the ring of continuous functions from [0, 1] to \mathbb{R} .

STRONG NULLSTELLENSATZ: Let K be an algebraically closed field, and $R = K[X_1, \ldots, X_n]$ be a polynomial ring. Let $I \subseteq R$ be an ideal and $f \in R$ a polynomial. Then

f vanishes at every point of $\mathcal{Z}(I)$ if and only if $f \in \sqrt{I}$.

DEFINITION: Let K be a field and $R = K[X_1, \ldots, X_n]$. A subvariety of K^n is a set of the form $\mathcal{Z}(S)$ for some set of polynomials $S \subseteq R$; i.e., a solution set of some system of polynomial equations.

COROLLARY: Let K be an algebraically closed field. There is a bijection

{radical ideals in $K[X_1, \ldots, X_n]$ } \longleftrightarrow {subvarieties of K^n }.

- (1) Proof of Strong Nullstellensatz:
 - (a) Show that $\mathcal{Z}(I) = \mathcal{Z}(\sqrt{I})$, and deduce the (\Leftarrow) direction.
 - (b) Let Y be an extra indeterminate. Show that f vanishes on $\mathcal{Z}(I)$ implies that

$$\mathcal{Z}(I + (Yf - 1)) = \emptyset$$
 in K^{n+1} .

- (c) What does the Nullstellensatz have to say about that?
- (d) Apply the *R*-algebra homomorphism $\phi : R[Y] \to \operatorname{frac}(R)$ given by $\phi(Y) = \frac{1}{f}$ and clear denominators.

(2) Strong Nullstellensatz warmup:

- (a) Consider the ideal $I = (X^2 + Y^2) \in \mathbb{R}[X, Y]$ and f = X. Discuss the hypotheses and conclusion of Strong Nullstellensatz in this example.
- (b) Show that¹ no power of $F = X^2 + Y^2 + Z^2$ is in the ideal

 $I = (X^3 - Y^2 Z, Y^7 - XZ^3, 3X^5 - XYZ - 2Z^{19})$ in the ring $\mathbb{C}[X, Y, Z]$.

- (3) Prove the Corollary.
- (4) Let $R = \mathbb{C}[T]$ be a polynomial ring. In this problem, we will show that the ideal of \mathbb{C} -algebraic relations on the elements $\{T^2, T^3, T^4\}$ is $I = (X_1^2 - X_3, X_2^2 - X_1X_3)$. (a) Let $\phi : \mathbb{C}[X_1, X_2, X_3] \to \mathbb{C}[T]$ be the \mathbb{C} -algebra map $X_1 \mapsto T^2, X_2 \mapsto T^3, X_3 \mapsto T^4$. Show
 - that $I \subseteq \ker(\phi)$.
 - **(b)** Show that $\mathcal{Z}(I) \subseteq \{(\lambda^2, \lambda^3, \lambda^4) \in \mathbb{C}^3 \mid \lambda \in \mathbb{C})\} \subseteq \mathcal{Z}(\ker(\phi))$, and deduce that $\ker(\phi) \subseteq \sqrt{I}$.
 - (c) Show that I is prime², and complete the proof.
- (5) Let K be an algebraically closed field and $R = K \begin{bmatrix} X_{11} & X_{12} \\ X_{21} & X_{22} \end{bmatrix}$ be a polynomial ring. Use the Strong Nullstellensatz to show that any polynomial $F(X_{11}, X_{12}, X_{21}, X_{22})$ that vanishes on every matrix of rank at most one is a multiple of det $\begin{bmatrix} X_{11} & X_{12} \\ X_{21} & X_{22} \end{bmatrix}$.

¹Hint: You just need to find one point. One, one, one...

²Show $\mathbb{C}[X_1, X_2, X_3]/I$ is a domain by simplifying the quotient.

(6) We say that a subvariety of K^n is **irreducible** if it cannot be written as a union of two proper subvarities. Show that the bijection from the Corollary restricts to a bijection

{prime ideals in $K[X_1, \ldots, X_n]$ } \longleftrightarrow {irreducible subvarieties of K^n }.

(7) Use the Strong Nullstellensatz to show that, in a finitely generated algebra over an algebrically closed field, every radical ideal can be written as an intersection of maximal ideals.

DEFINITION: Let *R* be a ring, and $I \subseteq R$ an ideal of *R*.

- The spectrum of a ring R, denoted Spec(R), is the set of prime ideals of R.
- We set $V(I) := \{ \mathfrak{p} \in \operatorname{Spec}(R) \mid I \subseteq \mathfrak{p} \}$, the set of primes containing I.
- We set $D(I) := \{ \mathfrak{p} \in \operatorname{Spec}(R) \mid I \not\subseteq \mathfrak{p} \}$, the set of primes *not* containing *I*.
- More generally, for any subset $S \subseteq R$, we define V(S) and D(S) analogously.

DEFINITION/PROPOSITION: The collection $\{V(I) \mid I \text{ an ideal of } R\}$ is the collection of closed subsets of a topology on R, called the **Zariski topology**; equivalently, the open sets are D(I) for I an ideal of R.

DEFINITION: Let $\phi : R \to S$ be a ring homomorphism. Then the **induced map on Spec** corresponding to ϕ is the map $\phi^* : \operatorname{Spec}(S) \to \operatorname{Spec}(R)$ given by $\phi^*(\mathfrak{p}) := \phi^{-1}(\mathfrak{p})$.

LEMMA: Let \mathfrak{p} be a prime ideal. Let I_{λ} , J be ideals.

(1) $\sum_{\lambda} I_{\lambda} \subseteq \mathfrak{p} \iff I_{\lambda} \subseteq \mathfrak{p}$ for all λ . (2) $IJ \subseteq \mathfrak{p} \iff I \subseteq \mathfrak{p}$ or $J \subseteq \mathfrak{p}$

- (3) $I \cap J \subseteq \mathfrak{p} \iff I \subseteq \mathfrak{p}$ or $J \subseteq \mathfrak{p}$
- (4) $I \subseteq \mathfrak{p} \Longleftrightarrow \sqrt{I} \subseteq \mathfrak{p}$
- (1) The spectrum of some reasonably small rings.
 - (a) Let $R = \mathbb{Z}$ be the ring of integers.
 - (i) What are the elements of Spec(R)? Be careful not to forget (0)!
 - (ii) Draw a picture Spec(R) (with \cdots since you can't list everything) with a line going up from p to q if $p \subset q$.
 - (iii) Describe the sets V(I) and D(I) for any ideal I.
 - **(b)** Same questions for R = K a field.
 - (c) Same questions for the polynomial ring $R = \mathbb{C}[X]$.
 - (d) Same questions¹ for the power series ring R = K[X] for a field K.
- (2) More Spectra.
 - (a) Let $R = \mathbb{C}[X, Y]$ be a polynomial ring in two variables. Find some maximal ideals, the zero ideal, and some primes that are neither. Draw a picture like the ones from the previous problem to illustrate some containments between these.
 - (b) Let R be a ring and I be an ideal. Use the Second Isomorphism Theorem to give a natural bijection between $\operatorname{Spec}(R/I)$ and V(I).
 - (c) Let $R = \frac{\mathbb{C}[X, Y]}{(XY)}$. Let x = [X] and y = [Y].

(i) Use the definition of prime ideal to show that $\text{Spec}(R) = V(x) \cup V(y)$.

- (ii) Use the previous problem to completely describe V(x) and V(y).
- (iii) Give a complete description/picture of Spec(R).

¹Spoiler: The only primes are (0) and (X). To prove it, show/recall that any nonzero series f can be written as $f = X^n u$ for some unit $u \in K[\![X]\!]$.

(3) Let R be a ring.

- (a) Show that for any subset S of R, V(S) = V(I) where I = (S).
- **(b)** Translate the lemma to fill in the blanks:

$$V(I) _ V(\sqrt{I}) \qquad D(I) _ D(\sqrt{I})$$

$$V(\sum_{\lambda} I_{\lambda}) _ V(I_{\lambda}) \qquad D(\sum_{\lambda} I_{\lambda}) _ D(I_{\lambda})$$

$$V(f_{1}, \dots, f_{n}) _ V(f_{1}) _ \dots _ V(f_{n}) \qquad D(f_{1}, \dots, f_{n}) _ D(f_{1}) _ \dots _ D(f_{n})$$

$$V(IJ) _ V(I) _ V(J) \qquad D(IJ) _ D(I) _ D(J)$$

$$V(I \cap J) _ V(I) _ V(J) \qquad D(I \cap J) _ D(I) _ D(J)$$

- (c) Use the above to verify that the Zariski topology indeed satisfies the axioms of a topology.
- (4) The induced map on Spec: Let $\phi : R \to S$ be a ring homomorphism.
 - (a) Show that for any prime ideal $q \subseteq S$, the ideal $\phi^*(q) = \phi^{-1}(q)$ is a prime ideal of R.
 - (b) Show that for any ideal $I \in R$, we have

$$(\phi^*)^{-1}(V(I)) = V(IS) \text{ and } (\phi^*)^{-1}(D(I)) = D(IS).$$

- (c) Show that ϕ^* is continuous.
- (d) If $\phi: R \to R/I$ is quotient map, describe ϕ^* .
- (5) Let R and S be rings. Describe $\operatorname{Spec}(R \times S)$ in terms of $\operatorname{Spec}(R)$ and $\operatorname{Spec}(S)$.
- (6) Properties of $\operatorname{Spec}(R)$.
 - (a) Show that for any ring R, the space Spec(R) is compact.
 - (b) Show that if Spec(R) is Hausdorff, then every prime of R is maximal.
 - (c) Show that $\operatorname{Spec}(R) \cong \operatorname{Spec}(R/\sqrt{0})$.
- (7) Let K be a field, and $R = \frac{K[X_1, X_2, \dots]}{(\{X_i X_i X_j \mid 1 \le i \le j\})}$. Describe Spec(R) as a set and as a topological space.

FORMAL NULLSTELLENSATZ: Let R be a ring, I an ideal, and $f \in R$. Then $V(f) \supseteq V(I)$ if and only if $f \in \sqrt{I}$.

COROLLARY 1: Let R be a ring. There is a bijection

{radical ideals in R} \longleftrightarrow {closed subsets of Spec(R)}.

DEFINITION: Let R be a ring and I an ideal. A **minimal prime** of I is a prime p that contains I, and is minimal among primes containing I. We write Min(I) for the set of minimal primes of I.

LEMMA: Every prime that contains *I* contains a minimal prime of *I*.

COROLLARY 2: Let R be a ring and I be an ideal. Then

$$\sqrt{I} = \bigcap_{\mathfrak{p} \in \operatorname{Min}(I)} \mathfrak{p}$$

DEFINITION: A subset W of a ring R is **multiplicatively closed** if $1 \in W$ and $u, v \in W$ implies $uv \in W$.

PROPOSITION: Let R be a ring and W be a multiplicatively closed subset. Then every ideal I such that $I \cap W = \emptyset$ is contained in a prime ideal p such that $p \cap W = \emptyset$.

- (1) Proof of Formal Nullstellensatz and Corollaries.
 - (a) Show the direction (\Leftarrow) of Formal Nullstellensatz.
 - (b) Verify that $W = \{f^n \mid n \ge 0\}$ is a multiplicatively closed set. Then apply the Proposition to prove the direction (\Rightarrow) of Formal Nullstellesatz.
 - (c) Prove Corollary 1.
 - (d) Prove the Lemma.
 - (e) Prove Corollary 2.
 - (f) What does Corollary 2 say in the special case I = (0)?
- (2) Use the Formal Nullstellensatz to fill in the blanks:

 $f ext{ is nilpotent } \iff V(f) = _ \ \iff D(f) = _$

What property replaces "nilpotent" if you swap the blanks for V and D above?

- (3) Prove¹ the Proposition.
- (4) Let R be a ring. Show² that Spec(R) is connected as a topological space if and only if $R \not\cong S \times T$ for rings³ S, T.

¹Hint: Take an ideal maximal among those that don't intersect W.

²Start with the (\Rightarrow) direction. For the other direction, use CRT.

³Recall that the zero ring is not a ring.

DEFINITION: A ring is **local** if it has a unique maximal ideal. We write (R, \mathfrak{m}) for a local ring to denote the ring R and the maximal ideal \mathfrak{m} ; we many also write (R, \mathfrak{m}, k) to indicate the residue field $k := R/\mathfrak{m}$.

GENERAL NAK: Let R be a ring, I an ideal, and M be a finitely generated module. If IM = M, then there is some $a \in R$ such that $a \equiv 1 \mod I$ and aM = 0.

LOCAL NAK 1: Let (R, \mathfrak{m}) be a local ring and M be a finitely generated module. If $M = \mathfrak{m}M$, then M = 0.

LOCAL NAK 2: Let (R, \mathfrak{m}) be a local ring and M be a finitely generated module. Let N be a submodule of M. Then $M = N + \mathfrak{m}M$ if and only if M = N.

LOCAL NAK 3: Let (R, \mathfrak{m}, k) be a local ring and M be a finitely generated module. Then a set of elements $S \subseteq M$ generates M if and only if the image of S in $M/\mathfrak{m}M$ generates $M/\mathfrak{m}M$ as a k-vector space.

DEFINITION: Let (R, \mathfrak{m}, k) be a local ring and M be a finitely generated module. A set of elements S of M is a **minimal generating set** for M if the image of S in $M/\mathfrak{m}M$ is a basis for $M/\mathfrak{m}M$ as a k-vector space.

- (1) Local rings.
 - (a) Show that for a ring R the following are equivalent:
 - R is a local ring.
 - The set of all nonunits forms an ideal.
 - The set of all nonunits is closed under addition.
 - **(b)** Show that if A is a domain then A[X] is *not* a local ring.
 - (c) Show that if K is a field, the power series ring $R = K[X_1, \ldots, X_n]$ is a local ring.
 - (d) Let $p \in \mathbb{Z}$ be a prime number, and $\mathbb{Z}_{(p)} \subseteq \mathbb{Q}$ be the set of rational numbers that can be written with denominator *not* a multiple of p. Show that $(\mathbb{Z}_{(p)}, p\mathbb{Z}_{(p)})$ is a local ring.
 - (e) Show that any quotient of a local ring is also a local ring.
- (2) General NAK implies Local NAKs
 - (a) Show that General NAK implies Local NAK 1.
 - **(b)** Briefly¹ explain why Local NAK 1 implies Local NAK 2.
 - (c) Briefly² explain why Local NAK 2 implies Local NAK 3.
 - (d) Use Local NAK 3 to briefly explain why a minimal generating set is a generating set, and that, in this setting, any generating set contains a minimal generating set.
- (3) Proof of General NAK: Let M = ∑_{i=1}ⁿ Rm_i. Set v to be the row vector [m₁,...,m_n].
 (a) Suppose that IM = M. Explain why there is an n × n matrix A with entries in I such that
 - (a) Suppose that IM = M. Explain why there is an $n \times n$ matrix A with entries in I such that vA = v.
 - **(b)** Apply a TRICK and complete the proof.

¹Reuse an old argument in a similar setting.

²It's déjà vu all over again.

- (4) Let (R, \mathfrak{m}) be a local ring, $f \in R$ not a unit, and M be a nonzero finitely generated module. Show that there is some element of M that is *not* a multiple of f.
- (5) Applications of NAK.
 - (a) Let R be a ring and I be a finitely generated ideal. Show that if $I^2 = I$ then there is some idempotent e such that I = (e).
 - (b) Find a counterexample to (a) if I is *not* assumed to be finitely generated.
 - (c) Let (R, \mathfrak{m}) be a Noetherian local ring and M be a finitely generated module. Show that $\bigcap_{n>1} \mathfrak{m}^n M = 0.$
 - (d) Find a counterexample to (c) if (R, \mathfrak{m}) is still Noetherian local but M is not finitely generated.
 - (e) Find a counterexample to (c) if (R, \mathfrak{m}) with M = R, \mathfrak{m} is a maximal ideal, but R is not necessarily Noetherian and local.
 - (f) Let R be a Noetherian ring, and M a finitely generated module. Let $\phi : M \to M$ be a surjective R-module homomorphism. Show³ that ϕ must also be injective.
 - (g) Let (R, \mathfrak{m}) be a local ring. Suppose that $R_{red} := R/\sqrt{0}$ is a domain, and that there is some $f \in R$ such that R/fR is reduced (and nonzero). Show that R is reduced (and hence a domain).

³Hint: Take a page from the 818 playbook and give M an R[X]-module structure.

DEFINITION: Let R be a ring and W a multiplicatively closed subset with $0 \notin W$. The localization $W^{-1}R$ is the ring with

• elements equivalence classes of $(r, w) \in R \times W$, with the class of (r, w) denoted as $\frac{r}{w}$.

• with equivalence relation $\frac{s}{u} = \frac{t}{v}$ if there is some $w \in W$ such that w(sv - tu) = 0,

- addition given by $\frac{s}{u} + \frac{t}{v} = \frac{sv + tu}{uv}$, and
- multiplication given by $\frac{s}{u}\frac{t}{v} = \frac{st}{uv}$.
- (If $0 \in W$, then $W^{-1}R := 0$, which by our convention is not a ring.)

DEFINITION: Let R be a ring.

- If $f \in R$ is nonnilpotent¹, then $R_f := \{1, f, f^2, \dots\}^{-1} R$.
- If $\mathfrak{p} \subseteq R$ is a prime ideal then $R_{\mathfrak{p}} := (R \setminus \mathfrak{p})^{-1}R$.
- The total quotient ring of R is $Frac(R) := \{w \in R \mid w \text{ is a nonzerodivisor}\}^{-1}R$.

For a ring R, multiplicative set $W \not\supseteq 0$, and an ideal I, we define

$$W^{-1}I := \left\{ \frac{a}{w} \in W^{-1}R \mid a \in I \right\}.$$

THEOREM: Let R be a ring and W be a multiplicatively closed subset. Then the map induced on Spec corresponding to the natural map $R \to W^{-1}R$ yields a homeomorphism into its image:

 $\operatorname{Spec}(W^{-1}R) \cong \{ \mathfrak{p} \in \operatorname{Spec}(R) \mid \mathfrak{p} \cap W = \varnothing \}.$

LEMMA: Let R be a ring and W be a multiplicatively closed subset.

- (1) For any ideal $I \subseteq R$, $W^{-1}I = I(W^{-1}R)$.
- (2) For any ideal $I \subseteq R$, $W^{-1}I \cap R = \{r \in R \mid \exists w \in W : wr \in I\}$.
- (3) For any ideal $J \subseteq W^{-1}R$, $W^{-1}(J \cap R) = J$.
- (4) For any prime ideal $\mathfrak{p} \subset R$ with $\mathfrak{p} \cap W = \emptyset$, $W^{-1}\mathfrak{p}$ is prime.

(1) Computing localizations

- (a) What is the natural ring homomorphism $R \to W^{-1}R$?
- (b) Show that the kernel of $R \to W^{-1}R$ is ${}^{W}0 := \{r \in R \mid \exists w \in W : wr = 0\}$.
- (c) If every element of W is a nonzerodivisor, explain why the equivalence relation on $W^{-1}R$ simplifies to $\frac{s}{u} = \frac{t}{v}$ if and only if sv = tu.
- (d) If R is a domain, explain why Frac(R) is the usual fraction field of R.
- (e) If R is a domain, explain why $W^{-1}R$ is a subring of the fraction field of R. Which subring?
- (f) Let $\overline{R} = R/W_0$ and \overline{W} be the image of W in \overline{R} . Show that $W^{-1}R \cong \overline{W}^{-1}\overline{R}$.

¹If f is nilpotent, $0 \in \{1, f, f^2, ...\}$ so $R_f = 0$. ²If $W \cap \mathfrak{p} \ni a$, then $W^{-1}\mathfrak{p} \ni \frac{a}{a} = \frac{1}{1}$, so $W^{-1}\mathfrak{p} = W^{-1}R$ is the improper ideal!

(2) Ideals in localizations: Let R be a ring and W a multiplicatively closed set.
(a) Use the Theorem to show that, if f ∈ R is nonnilpotent, then

$$\operatorname{Spec}(R_f) \cong D(f) \subseteq \operatorname{Spec}(R).$$

(b) Use the Theorem to show that, if $\mathfrak{p} \subseteq R$ is prime, then

$$\operatorname{Spec}(R_{\mathfrak{p}}) \cong \{\mathfrak{q} \in \operatorname{Spec}(R) \mid \mathfrak{q} \subseteq \mathfrak{p}\} =: \Lambda(\mathfrak{p}).$$

Deduce that R_{p} is always a *local* ring.

- (c) Draw³ a picture of Spec $\left(\frac{\mathbb{C}[X,Y]}{(XY)}\right)$.
- (d) Use Part (3) of the Lemma to show that every ideal of $W^{-1}R$ is of the form $W^{-1}I$ for some ideal $I \subseteq R$.
- (e) Use Part (3) of the Lemma to show that any localization of a Noetherian ring is Noetherian.
- (3) Examples of localizations
 - (a) Describe as concretely as possible the rings \mathbb{Z}_2 and $\mathbb{Z}_{(2)}$ as defined above.
 - (b) Describe as concretely as possible the rings $K[X]_X$ and $K[X]_{(X)}$.
 - (c) Describe as concretely as possible the rings $K[X,Y]_X$ and $K[X,Y]_{(X)}$.
 - (d) Describe as concretely as possible the rings $\left(\frac{K[X,Y]}{(XY)}\right)_x$ and $\left(\frac{K[X,Y]}{(XY)}\right)_{(x)}$.

(e) Describe as concretely as possible $\left(\frac{K[X,Y]}{(X^2)}\right)_x$ and $\left(\frac{K[X,Y]}{(X^2)}\right)_{(x)}$.

- (4) Prove the Lemma and the Theorem.
- (5) Prove the following LEMMA: If V, W are multiplicatively closed sets, then $(VW)^{-1}R \cong (\frac{V}{1})^{-1}(W^{-1}R)$, where $(\frac{V}{1})^{-1}$ is the image of V in $W^{-1}R$.
- (6) Minimal primes.
 - (a) Let \mathfrak{p} be a minimal prime of R. Show that for any $a \in \mathfrak{p}$, there is some $u \notin \mathfrak{p}$ and $n \ge 1$ such that $ua^n = 0$.
 - (b) Show that the set of minimal⁴ primes Min(R) with the induced topology from Spec(R) is Hausdorff.
 - (c) Let $R = K[X_1, X_2, X_3, \dots]/(\{X_i X_j \mid i \neq j\})$. Describe Min(R) as a topological space.

³Recall that Spec $\left(\frac{\mathbb{C}[X,Y]}{(XY)}\right)$ consists of $\{(x),(y),(x,y-\alpha),(x-\beta,y) \mid \alpha,\beta \in \mathbb{C}\}$.

 $^{{}^{4}}Min(R)$ denotes the set of primes of R that are minimal. This is the same as Min(0) in our notation of minimal primes of an ideal; this conflict of notation is standard.

DEFINITION: Let R be a ring, M an R-module, and W a multiplicatively closed subset. The localization $W^{-1}M$ is the $W^{-1}R$ -module¹ with

- elements equivalence classes of $(m, w) \in M \times W$, with the class of (m, w) denoted as $\frac{m}{w}$.
- with equivalence relation $\frac{m}{u} = \frac{n}{v}$ if there is some $w \in W$ such that w(vm un) = 0,
- addition given by $\frac{m}{u} + \frac{n}{v} = \frac{vm + un}{uv}$, and action given by $\frac{r}{u}\frac{m}{v} = \frac{rm}{uv}$.

If $\alpha : M \to N$ is a homomorphism of *R*-modules, then the $W^{-1}R$ -module homomorphism $W^{-1}\alpha : W^{-1}M \to W^{-1}N$ is defined by $W^{-1}\alpha(\frac{m}{w}) = \frac{\alpha(m)}{w}$.

DEFINITION: Let R be a ring and M a module.

- If $f \in R$, then $M_f := \{1, f, f^2, \dots\}^{-1} M$.
- If $\mathfrak{p} \subseteq R$ is a prime ideal then $M_{\mathfrak{p}} := (R \smallsetminus \mathfrak{p})^{-1}M$.

PROPOSITION: Let R be a ring, W a multiplicatively closed set, and $N \subseteq M$ be modules. Then

- $W^{-1}N$ is a submodule of $W^{-1}M$, and
- $W^{-1}(M/N) \cong \frac{W^{-1}M}{W^{-1}N}.$

COROLLARY: Let R be a ring, I an ideal, and W a multiplicatively closed subset. Then the map $R \rightarrow W^{-1}(R/I)$ induces an order preserving bijection

$$\operatorname{Spec}(W^{-1}(R/I)) \xrightarrow{\sim} \{ \mathfrak{p} \in \operatorname{Spec}(R) \mid \mathfrak{p} \supseteq I \text{ and } \mathfrak{p} \cap W = \varnothing \}.$$

- (1) Let M be an R-module and W be a multiplicatively closed set.
 - (a) What is the natural map from $M \to W^{-1}M$?

 - (b) If S is a generating set for M, explain why $\frac{S}{1} = \{\frac{s}{1} \mid s \in S\}$ is a generating set for $W^{-1}M$. (c) Let $m \in M$. Show that $\frac{m}{u}$ is zero in $W^{-1}M$ if and only if there is some $w \in W$ such that wm = 0 in M.
 - (d) Let $m_1, \ldots, m_t \in M$ be a finite set of elements. Show that $\frac{m_1}{u_1}, \ldots, \frac{m_t}{u_t} \in W^{-1}M$ are all zero if and only if there is some $w \in W$ that such that $wm_i = 0$ in M for all i.
 - (e) Let M be a finitely generated module. Show that $W^{-1}M = 0$ if and only if $M_w = 0$ for some $w \in W$.
 - (f) Let $m \in M$ and \mathfrak{p} be a prime ideal. Show that $\frac{m}{1} \neq 0$ in $M_{\mathfrak{p}}$ if and only if $\mathfrak{p} \supseteq \operatorname{ann}_{R}(m)$.
- (2) Prove the Proposition.
- (3) Corollary.
 - (a) Rewrite the Corollary in the special case $W = R \setminus \mathfrak{p}$ for some prime \mathfrak{p} .
 - (b) Use the Proposition² to justify the Corollary.

¹If $0 \in W$, then $W^{-1}R = 0$ is not a ring.

²Hint: You may want to show that, for $W \cap \mathfrak{p} = \emptyset$, $I \subseteq \mathfrak{p}$ if and only if $W^{-1}I \subseteq W^{-1}\mathfrak{p}$. For this, it may help to observe that $W^{-1}\mathfrak{p} \cap R = \mathfrak{p}$. You can also use that the isomorphism from the Proposition is a ring isomorphism when R is a ring and I is an ideal.

- (4) Invariance of base: Let $\phi : R \to S$ be a ring homomorphism, and $V \subseteq R$ and $W \subseteq S$ be multiplicatively closed sets such that $\phi(V) = W$. Show that for any S-module $M, V^{-1}M \cong W^{-1}M$.
- (5) I'm already local!
 - (a) Suppose that the action of each $w \in W$ on M is invertible: for every $w \in W$ the map $m \mapsto mw$ is bijective. Show that $M \cong W^{-1}M$ via the natural map.
 - (b) Let R be a ring, m a maximal ideal (so R/m is a field), and M a module such that mM = 0. Show that M ≅ M_m by the natural map.
 - (c) More generally, show that³ if for every $m \in M$ there is some n such that $\mathfrak{m}^n m = 0$, then $M \cong M_{\mathfrak{m}}$.
- (6) Prove the following:

LEMMA: Let R be a ring, W a multiplicatively closed set. Let M be a finitely presented⁴ R-module, and N an arbitrary R-module. Then for any homomorphism of $W^{-1}R$ -modules $\beta: W^{-1}M \to W^{-1}N$, there is some $w \in W$ and some R-module homomorphism $\alpha: M \to N$ such that $\beta = \frac{1}{w}W^{-1}\alpha$.

- (a) Given β , show that there exists some $u \in W$ such that for every $m \in M$, $\frac{u}{1}\beta(\frac{M}{1}) \subseteq \frac{N}{1}$.
- (b) Let m₁,..., m_a be a (finite) set of generators for M, and A = [r_{ij}] be a corresponding (finite) matrix of relations. Let n₁,..., n_a be an a-tuple of elements of N. Justify: There exists an R-module homomorphism α : M → N such that α(m_i) = n_i if and only if [n₁,..., n_a]A = 0.
- (c) Complete the proof.

³Hint: Note that R/\mathfrak{m}^n is local with maximal ideal (the image of) \mathfrak{m} .

⁴This means that M admits a finite generating set for which the module of relations is also finitely generated.

DEFINITION: Let \mathcal{P} be a property¹ of a ring. We say that

• \mathcal{P} is preserved by localization if

 \mathcal{P} holds for $R \Longrightarrow$ for every multiplicatively closed set W, \mathcal{P} holds for $W^{-1}R$.

• *P* is a **local property** if

 \mathcal{P} holds for $R \iff$ for every prime ideal $\mathfrak{p} \in \operatorname{Spec}(R)$, \mathcal{P} holds for $R_{\mathfrak{p}}$.

One defines **preserved by localization** and **local property** for properties of modules in the same way, or for properties of a ring element (where one considers $\frac{r}{1} \in W^{-1}R$ or $R_{\mathfrak{p}}$ in the right-hand side) or module element.

DEFINITION: The **support** of a module M is

 $\{\mathfrak{p} \in \operatorname{Spec}(R) \mid M_{\mathfrak{p}} \neq 0\}.$

PROPOSITION: If M is a finitely generated module, then $\text{Supp}(M) = V(\text{ann}_R(M))$.

- (1) Let R be a ring, M be a module, and $m \in M$.
 - (a) Show that² the following are equivalent:
 - (i) m = 0 in M;
 - (ii) $\frac{m}{1} = 0$ in $W^{-1}M$ for all multiplicatively closed $W \subseteq R$;
 - (iii) $\frac{\tilde{m}}{1} = 0$ in $M_{\mathfrak{p}}$ for all $\mathfrak{p} \in \operatorname{Spec}(R)$;
 - (iv) $\frac{\dot{m}}{1} = 0$ in $M_{\mathfrak{m}}$ for all $\mathfrak{m} \in \operatorname{Max}(R)$.
 - (b) Deduce that "= 0" (as a property of a module element) is preserved by localization, and a local property.
 - (c) Show that the "= 0" locus (as a property of a module element) of $m \in M$ is $D(\operatorname{ann}_R(m))$.
- (2) Let R be a ring, M be a module.
 - (a) Show that the following are equivalent, and deduce that "= 0" (as a property of a module) is preserved by localization, and a local property.
 - (i) M = 0
 - (ii) $W^{-1}M = 0$ for all multiplicatively closed $W \subseteq R$;
 - (iii) $M_{\mathfrak{p}} = 0$ for all $\mathfrak{p} \in \operatorname{Spec}(R)$;
 - (iv) $M_{\mathfrak{m}} = 0$ for all $\mathfrak{m} \in \operatorname{Max}(R)$.
 - **(b)** Prove³ the Proposition.
- (3) More local properties
 - (a) Let R be a ring and $N \subseteq M$ modules. Show⁴ that the following are equivalent, and deduce that M = N for a submodule N is preserved by localization and a local property:
 - (i) M = N.
 - (ii) $W^{-1}M = W^{-1}N$ for all multiplicatively closed $W \subseteq R$;
 - (iii) $M_{\mathfrak{p}} = N_{\mathfrak{p}}$ for all $\mathfrak{p} \in \operatorname{Spec}(R)$;
 - (iv) $M_{\mathfrak{m}} = N_{\mathfrak{m}}$ for all $\mathfrak{m} \in \operatorname{Max}(R)$.

¹For example, two properties of a ring are "is reduced" or "is a domain".

²Hint: Go (i) \Rightarrow (ii) \Rightarrow (iii) \Rightarrow (iv) \Rightarrow (i). For the last, If $m \neq 0$, consider a maximal ideal containing $\operatorname{ann}_R(m)$.

³Recall that if $M = \sum_{i} Rm_{i}$ is finitely generated then $W^{-1}M = \sum_{i} W^{-1}R\frac{m_{i}}{1}$ and that an element annihilates a module if and only if it annihilates every generator in a generating set.

⁴Hint: Consider M/N.

- (b) Let R be a ring. Show that the following are equivalent:
 - (i) R is reduced
 - (ii) $W^{-1}R$ is reduced for all multiplicatively closed $W \subseteq R$;
 - (iii) $R_{\mathfrak{p}}$ is reduced for all $\mathfrak{p} \in \operatorname{Spec}(R)$.
 - (iv) $R_{\mathfrak{m}}$ is reduced for all $\mathfrak{m} \in Max(R)$.
- (4) Not so local.
 - (a) Show that the property R is a domain is preserved by localization.
 - (b) Let K be a field and $R = K \times K$. Show that $R_{\mathfrak{p}}$ is a field for all $\mathfrak{p} \in \operatorname{Spec}(R)$. Conclude that the property that R is a domain (or R is a field) is not a local property.
- (5) More local properties, or not.
 - (a) Let M be an R-module. Show that the property that M is finitely generated is preserved by localization but is not⁵ a local property.
 - (b) Let R ⊆ S be an inclusion of rings. Show that the properties that R ⊆ S is algebra-finite/integral/module-finite are preserved by localization on R: i.e., if one of these holds, the same holds for W⁻¹R ⊆ W⁻¹S for any W ⊆ R multiplicatively closed.
 - (c) Let R ⊆ S be an inclusion of rings, and s ∈ S. Show that the property that s ∈ S is integral over R is a local property on R: i.e., this holds if and only if it holds for ^s/₁ ∈ S_p over R_p for each p ∈ Spec(R).
 - (d) Is the property that $r \in R$ is a unit a local property?
 - (e) Is the property that $r \in R$ is a zerodivisor a local property?
 - (f) Is the property that $r \in R$ is nilpotent a local property?
 - (g) Let $R \subseteq S$ be an inclusion of rings. Are the properties $R \subseteq S$ is algebra-finite/module-finite local properties on R?
- (6) Let \mathcal{P} be a local property of a ring, and $f_1, \ldots, f_t \in R$ such that $(f_1, \ldots, f_t) = R$. Show that if \mathcal{P} holds for each R_{f_i} , then \mathcal{P} holds for R.

⁵Hint: Consider $\bigoplus_{\alpha \in \mathbb{C}} \mathbb{C}[X]/(X - \alpha)$