
WORKSHEET #1.1: RINGS

EXAMPLE: The following are rings.
(1) Rings of numbers, like Z and Z[i] = {a+ bi ∈ C | a, b ∈ Z}.
(2) Given a starting ring A, the polynomial ring in one indeterminate

A[X] := {adXd + · · ·+ a1X + a0 | d ≥ 0, ai ∈ A},
or in a (finite or infinite!1) set of indeterminates A[X1, . . . , Xn], A[Xλ | λ ∈ Λ].

(3) Given a starting ring A, the power series ring in one indeterminate

AJXK :=

{∑
i≥0

aiX
i | ai ∈ A

}
,

or in a set of indeterminates AJX1, . . . , XnK.
(4) For a set X , Fun(X,R) := {all functions f : [0, 1]→ R} with pointwise + and ×.
(5) C([0, 1]) := {continuous functions f : [0, 1]→ R} with pointwise + and ×.
(6) C∞([0, 1]) := {infinitely differentiable functions f : [0, 1]→ R} with pointwise + and ×.

(÷) Quotient rings: given a starting ring A and an ideal I , R = A/I .
(×) Product rings: given rings R and S, R× S = {(r, s) | r ∈ R, s ∈ S}.

DEFINITION: An element x in a ring R is called a
• unit if x has an inverse y ∈ R (i.e., xy = 1).
• zerodivisor if there is some y 6= 0 in R such that xy = 0.
• nilpotent if there is some e ≥ 0 such that xe = 0.
• idempotent if x2 = x.

We also use the terms nonunit, nonzerodivisor, nonnilpotent, nonidempotent for the negations of
the above. We say that a ring is reduced if it has no nonzero nilpotents.

(1)(1) Warmup with units, zerodivisors, nilpotents, and idempotents.
(a)(a) What are the implications between nilpotent, nonunit, and zerodivisor?
(b)(b) What are the implications between reduced, field, and domain?
(c)(c) What two elements of a ring are always idempotents? We call an idempotent nontrivial to

mean that it is neither of these.
(d)(d) If e is an idempotent, show that e′ := 1− e is an idempotent2 and ee′ = 0.

(2)(2) Elements in polynomial rings: Let R = A[X1, . . . , Xn] a polynomial ring over a domain A.
(a)(a) If n = 1, and f, g ∈ R = A[X], briefly explain why the top degree3 of fg equals the top

degree of f plus the top degree of g. What if A is not a domain?
(b)(b) Again if n = 1, briefly explain whyR = A[X] is a domain, and identify all of the units inR.
(c)(c) Now for general n, show that R is a domain, and identify all of the units in R.

1Note: Even if the index set is infinite, by definition the elements of A[Xλ | λ ∈ Λ] are finite sums of monomials (with
coefficients in A) that each involve finitely many variables.

2We call e′ the complementary idempotent to e.
3The top degree of f =

∑
aiX

i is max{k | ak 6= 0}; we say top coefficient for ak. We use the term top degree instead
of degree for reasons that will come up later.



(3)(3) Elements in power series rings: Let A be a ring.
(a)(a) Explain why the set of formal sums {

∑
i∈Z aiXi | ai ∈ A} with arbitrary positive and

negative exponents is not clearly a ring in the same way as AJXK.
(b)(b) Given series f, g ∈ AJXK, how much of f, g do you need to know to compute the X3-

coefficient of f + g? What about the X3-coefficient of fg?
(c)(c) Find the first three coefficients for the inverse4 of f = 1 + 3X + 7X2 + · · · in RJXK.
(d)(d) Does “top degree” make sense in AJXK? What about “bottom degree”?
(e)(e) Explain why5 for a domain A, the power series ring AJX1, . . . , XnK is also a domain.
(f)(f) Show6 that f ∈ AJX1, . . . , XnK is a unit if and only if the constant term of f is a unit.

(4) Elements in function rings.
(a) For R = Fun([0, 1],R),

(i) What are the nilpotents in R?
(ii) What are the units in R?

(iii) What are the idempotents in R?
(iv) What are the zerodivisors in R?

(b) ForR = C([0, 1],R),R = C∞([0, 1],R) same questions as above. When are there any/none?

(5)(5) Product rings and idempotents.
(a)(a) Let R and S be rings, and T = R × S. Show that (1, 0) and (0, 1) are nontrivial comple-

mentary idempotents in T .
(b)(b) Let T be a ring, and e ∈ T a nontrivial idempotent, with e′ = 1 − e. Explain why

Te = {te | t ∈ T} and Te′ are rings with the same addition and multiplication as T . Why
didn’t I say “subring”?

(c)(c) Let T be a ring, and e ∈ T a nontrivial idempotent, with e′ = 1−e. Show that T ∼= Te×Te′.
Conclude that R has nontrivial idempotents if and only if R decomposes as a product.

(6) Elements in quotient rings:
(a) Let K be a field, and R = K[X, Y ]/(X2, XY ). Find

• a nonzero nilpotent in R
• a zerodivisor in R that is not a nilpotent
• a unit in R that is not equivalent to a constant polynomial

(b) Find n ∈ Z such that
• [4] ∈ Z/(n) is a unit
• [4] ∈ Z/(n) is a nonzero nilpotent

• [4] ∈ Z/(n) is a nonnilp. zerodivisor
• [4] ∈ Z/(n) is a nontrivial idempotent

(7) More about elements.
(a) Prove that a nilpotent plus a unit is always a unit.
(b) LetA be an arbitrary ring, andR = A[X]. Characterize, in terms of their coefficients, which

elements of R are units, and which elements are nilpotents.
(c) Let A be an arbitrary ring, and R = AJXK. Characterize, in terms of their coefficients,

which elements of R are nilpotents.

4It doesn’t matter what the · · · are!
5You might want to start with the case n = 1.
6Hint: For n = 1, given f =

∑
i aiX

i, construct g =
∑
i biX

i by defining bm recursively b0 = 1/a0 and that the
Xm-coefficient of (

∑m
i=0 aiX

i)(
∑m
i=0 biXi) is 0 for m > 0.



§1.2: IDEALS

DEFINITION: Let S be a subset of a ring R. The ideal generated by S, denoted (S), is the smallest ideal
containing S. Equivalently,

(S) =
{∑

risi | ri ∈ R, si ∈ S
}

is the set of R-linear combinations1 of elements of S.

We say that S generates an ideal I if (S) = I .

DEFINITION: Let I, J be ideals of a ring R. The following are ideals:
• IJ := (ab | a ∈ I, b ∈ J).
• In := I · I · · · I︸ ︷︷ ︸

n times

= (a1 · · · an | ai ∈ I) for n ≥ 1.

• I + J := {a+ b | a ∈ I, b ∈ J} = (I ∪ J).
• rI := (r)I = {ra | a ∈ I} for r ∈ R.
• I : J := {r ∈ R | rJ ⊆ I}.

DEFINITION: Let I be an ideal in a ring R. The radical of I is
√
I := {f ∈ R | fn ∈ I for some n ≥ 1}.

An ideal I is radical if I =
√
I .

DIVISION ALGORITHM: Let A be a ring, and R = A[X] be a polynomial ring. Let g ∈ R be a monic
polynomial; i.e., the leading coefficient of f is a unit. Then for any f ∈ R, there exist unique polynomials
q, r ∈ R such that f = gq + r and the top degree of r is less than the top degree of g.

(1)(1) Briefly discuss why the two characterizations of (S) in Definition 2.1 are equal.

(2)(2) Finding generating sets for ideals: Let S be a subset of a ring R, and I an ideal.
(a)(a) To show that (S) = I , which containment do you think is easier to verify? How would you check?
(b)(b) To show that (S) = I given (S) ⊆ I , explain why it suffices to show that I/(S) = 0 in R/(S);

i.e., that every element of I is equivalent to 0 modulo S.
(c)(c) Let K be a field, R = K[U, V,W ] and S = K[X, Y ] be polynomial rings. Let φ : R→ S be the

ring homomorphism that is constant on K, and maps U 7→ X2, V 7→ XY,W 7→ Y 2. Show that
the kernel φ is generated by V 2 − UW as follows:
• Show that (V 2 − UW ) ⊆ ker(φ).
• Think of R as K[U,W ][V ]. Given F ∈ ker(φ), use the Division Algorithm to show that
F ≡ F1V + F0 modulo (V 2−UW ) for some F1, F0 ∈ K[U,W ] with F1V +F0 ∈ ker(φ).
• Use φ(F1V + F0) = 0 to show that F1 = F0 = 0, and conclude that F ∈ ker(φ).

(3)(3) Radical ideals:
(a)(a) Fill in the blanks and convince yourself:

• R/I is a field ⇐⇒ I is
• R/I is a domain ⇐⇒ I is
• R/I is reduced ⇐⇒ I is

(b)(b) Show that the radical of an ideal is an ideal.
(c)(c) Show that a prime ideal is radical.
(d)(d) Let K be a field and R = K[X, Y, Z]. Find a generating set2 for

√
(X2, XY Z, Y 2).

1Linear combinations always means finite linear combinations: the axioms of a ring can only make sense of finite sums.
2Hint: To show your set generates, you might consider the bottom degree of F considered as a polynomial in X and Y .



(4)(4) Evaluation ideals in polynomial rings: Let K be a field and R = K[X1, . . . , Xn] be a polynomial
ring. Let α = (α1, . . . , αn) ∈ Kn.
(a)(a) Let evα : R → K be the map of evaluation at α: evα(f) = f(α1, . . . , αn), or f(α) for short.

Show that mα := ker evα is a maximal ideal and R/mα
∼= K.

(b)(b) Apply division repeatedly to show that mα = (X1 − α1, . . . , Xn − αn).
(c)(c) For K = R and n = 1, find a maximal ideal that is not of this form. Same question with n = 2.
(d)(d) With K arbitrary again, show that every maximal ideal m of R for which R/m ∼= K is of the

form mα for some α ∈ Kn. Note: this is not a theorem with a fancy German name.

(5) Lots of generators:
(a) Let K be a field and R = K[X1, X2, . . . ] be a polynomial ring in countably many variables.

Explain3 why the ideal m = (X1, X2, . . . ) cannot be generated by a finite set.
(b) Show that the ideal (Xn, Xn−1Y, . . . , XY n−1, Y n) ⊆ K[X, Y ] cannot be generated by fewer

than n+ 1 generators.
(c) Let R = C([0, 1],R) and α ∈ (0, 1). Show that for any element g ∈ (f1, . . . , fn) ⊆ mα, there is

some ε > 0 and some C > 0 such that |g| < Cmaxi{|fi|} on (α − ε, α + ε). Use this to show
that mα cannot be generated by a finite set.

(6) Evaluation ideals in function rings: Let R = C([0, 1],R). Let α ∈ [0, 1].
(a) Let evα : C([0, 1])→ R be the map of evaluation at α: evα(f) = f(α). Show that mα := evα is

a maximal ideal and R/mα
∼= R.

(b) Show that (x− α) ⊆ mα.
(c) Show that every maximal ideal R is of the form mα for some α ∈ [0, 1]. You may want to argue

by contradiction: if not, there is an ideal I such that the sets Uf := {x ∈ [0, 1] | f(x) 6= 0} for
f ∈ I form an open cover of [0, 1]. Take a finite subcover Uf1 , . . . , Uft and consider f 2

1 +· · ·+f 2
t .

(7) Division Algorithm.
(a) What fails in the Division Algorithm when g is not monic? Uniqueness? Existence? Both?
(b) Review the proof of the Division Algorithm.

(8) Let K be a field and R = KJX1, . . . , XnK be a power series ring in n indeterminates. Let
R′ = KJX1, . . . , Xn−1K, so we can also think of R = R′JXnK. In this problem we will prove the
useful analogue of division in power series rings:

WEIERSTRASS DIVISION THEOREM: Let r ∈ R, and write g =
∑

i≥0 aiX
i
n with ai ∈ R′. For some

d ≥ 0, suppose that ad ∈ R′ is a unit, and that ai ∈ R′ is not a unit for all i < d. Then, for any f ∈ R,
there exist unique q ∈ R and r ∈ R′[Xn] such that f = gq+ r and the top degree of r as a polynomial
in Xn is less than d.

(a) Show the theorem in the very special case g = Xd
n.

(b) Show the theorem in the special case ai = 0 for all i < d.
(c) Show the uniqueness part of the theorem.4

(d) Show the existence part of the theorem.5

3Hint: You might find it convenient to show that (f1, . . . , fm) ⊆ (X1, . . . , Xn) for some n, and then show that (X1, . . . , Xn) $ m
4Hint: For an element of R′ or of R, write ord′ for the order in the X1, . . . , Xn−1 variables; that is, the lowest total X1, . . . , Xn−1-
degree of a nonzero term (not counting Xn in the degree). If qg + r = 0, write q =

∑
i biX

i
n. You might find it convenient to

pick i such that ord′(bi) is minimal, and in case of a tie, choose the smallest such i among these.
5Hint: Write g− =

∑t−1
i=0 aiX

i
n and g+ =

∑∞
i=t aiX

i
n. Apply (b) with g+ instead of g, to get some q0, r0; write f1 = f−(q0g+r0),

and keep repeating to get a sequence of qi’s and ri’s. Show that ord′(qi), ord′(ri) ≥ i, and use this to make sense of q =
∑

i qi
and r =

∑
i ri.



§1.3: ALGEBRAS

DEFINITION: Let A be a ring. An A-algebra is a ring R equipped with a ring homomorphism
φ : A→ R; we call φ the structure morphism of the algebra1. A homomorphism of A-algebras
is a ring homomorphism that is compatible with the structure morphisms; i.e., if φ : A → R and
ψ : A→ S are A-algebras, then α : R→ S is an A-algebra homomorphism if α ◦ φ = ψ.

UNIVERSAL PROPERTY OF POLYNOMIAL RINGS: Let2 A be a ring, and T = A[X1, . . . , Xn] be a
polynomial ring. For any A-algebra R, and any collection of elements r1, . . . , rn ∈ R, there is a
unique A-algebra homomorphism α : T → R such that α(Xi) = ri.

DEFINITION: Let A be a ring, and R be an A-algebra. Let S be a subset of R. The subalgebra
generated by S, denoted A[S], is the smallest A-subalgebra of R containing S. Equivalently3,

A[r1, . . . , rn] =

{∑
finite

ard11 · · · rdnn | a ∈ φ(A)

}
.

DEFINITION: Let R be an A-algebra. Let r1, . . . , rn ∈ R. The ideal of A-algebraic relations on
r1, . . . , rn is the set of polynomials f(X1, . . . , Xn) ∈ A[X1, . . . , Xn] such that f(r1, . . . , rn) = 0 in
R. Equivalently, the ideal of A-algebraic relations on r1, . . . , rn is the kernel of the homomorphism
α : A[X1, . . . , Xn]→ R given by α(Xi) = ri. We say that a set of elements in an A-algebra is
algebraically independent over A if it has no nonzero A-algebraic relations.

DEFINITION: A presentation of an A-algebra R consists of a set of generators r1, . . . , rn of R as an
A-algebra and a set of generators f1, . . . , fm ∈ A[X1, . . . , Xn] for the ideal of A-algebraic relations
on r1, . . . , rn. We call f1, . . . , fm a set of defining relations for R as an A-algebra.

PROPOSITION: If R is an A-algebra, and f1, . . . , fm is a set of defining relations for R as an
A-algebra, then R ∼= A[X1, . . . , Xn]/(f1, . . . , fm).

(1)(1) Let R be an A-algebra and r1, . . . , rn ∈ R.
(a)(a) Discuss why the equivalent characterizations in the definition ofA[r1, . . . , rn] are equivalent.
(b)(b) Explain whyA[r1, . . . , rn] is the image of theA-algebra homomorphism α : A[X1, . . . , Xn]→ R

such that α(Xi) = ri.
(c)(c) Suppose that R = A[r1, . . . , rn] and let f1, . . . , fm be a set of generators for the kernel of

the map α. Explain why R ∼= A[X1, . . . , Xn]/(f1, . . . , fm), i.e., why the Proposition above
is true.

(d)(d) Suppose that R is generated as an A-algebra by a set S. Let I be an ideal of R. Explain why
R/I is generated as an A-algebra by the image of S in R/I .

(e)(e) Let R = A[X1, . . . , Xn]/(f1, . . . , fm), where A[X1, . . . , Xn] is a polynomial ring over A.
Find a presentation for R.

1Note: the same R with different φ’s yield different A-algebras. Despite this we often say “Let R be an A-algebra” without
naming the structure morphism.

2This is equally valid for polynomial rings in infinitely many variables T = A[Xλ | λ ∈ Λ] with a tuple of elements of
{rλ}λ∈Λ in R in bijection with the variable set. I just wrote this with finitely many variables to keep the notation for getting
too overwhelming.

3Again written with a finite set just for convenience.



(2)(2) Presentations of some subrings:
(a)(a) Consider the Z-subalgebra of C generated by

√
2. Write the notation for this ring. Is there a

more compact description of the set of elements in this ring? Find a presentation.
(b)(b) Same as (a) with 3

√
2 instead of

√
2.

(c)(c) Let K be a field, and T = K[X, Y ]. Come up with a concrete description of the ring
R = K[X2, XY, Y 2] ⊆ T , (i.e., describe in simple terms which polynomials are elements
of R), and give a presentation as a K-algebra.

(3)(3) Infinitely generated algebras:
(a)(a) Show that Q = Z[1/p | p is a prime number].
(b)(b) True or false: It is a direct consequence of the conclusion of (a) and the fact that there are

infinitely many primes that Q is not a finitely generated Z-algebra.
(c)(c) Given p1, . . . , pm prime numbers, describe the elements of Z[1/p1, . . . , 1/pm] in terms of

their prime factorizations. Can you ever have Z[1/p1, . . . , 1/pm] = Q for a finite set of
primes?

(d)(d) Show that Q is not a finitely generated Z-algebra.
(e) Show that, for a field K, the algebra K[X,XY,XY 2, XY 3, . . . ] ⊆ K[X, Y ] is not a finitely

generated K-algebra.
(f) Show that, for a field K, the algebra K[X, Y/X, Y/X2, Y/X3, . . . ] ⊆ K(X, Y ) is not a

finitely generated K-algebra.

(4) More algebras:
(a) Give two different nonisomorphic C[X]-algebra structures on C.
(b) Find a C-algebra generating set for the ring of polynomials in C[X, Y ] that only have terms

whose total degree (X-exponent plus Y -exponent) is a multiple of three (e.g.,X3+πX5Y +5
is in while X3 + πX4Y + 5 is out).

(c) Find a C-algebra presentation for C× C.

(5) Let K be a field. Describe which elements are in the K-algebra K[X,X−1] ⊆ K(X), and
find an element of K(X) not in K[X,X−1]. Then compute4 a presentation for K[X,X−1] as a
K-algebra.

(6) Can you guess defining relations for the ring in (4b)? Can you prove your guess?

4Hint: Note that Division does not apply. SayX1 7→ X andX2 7→ Y . Show that the topX2-degree coefficient of an algebraic
relation is a multiple of X1, and use this to set an induction on the top X2-degree.



§1.4: MODULES

EXAMPLE: For a ring R, the following are sources of modules:
(1) The free module of n-tuples Rn, or more generally, for a set Λ, the free module

R⊕Λ = {(rλ)λ∈Λ | rλ 6= 0 for at most finitely many λ ∈ Λ}.
(2) Every ideal I ⊆ R is a submodule of R.
(3) Every quotient ring R/I is a quotient module of R.
(4) If S is an R-algebra, (i.e., there is a ring homomorphism α : R→ S), then S is an R-module

by restriction of scalars: r · s := α(r)s.
(5) More generally, if S is an R-algebra and M is an S-module, then M is also an R-module by

restriction of scalars: r ·m := α(r) ·m.
(6) Given an R-module M and m1, . . . ,mn ∈ M , the module of R-linear relations on

m1, . . . ,mn is the set of n-tuples [r1, . . . , rn]tr ∈ Rn such that
∑

i rimi = 0 in R.

DEFINITION: Let M be an R-module. Let S be a subset of M . The submodule generated by S,
denoted1 ∑

m∈S Rm, is the smallest R-submodule of M containing S. Equivalently,∑
m∈S

Rm =
{∑

rimi | ri ∈ R,mi ∈ S
}

is the set of R-linear combinations of elements of S.

We say that S generates M if M =
∑

m∈S Rm.

DEFINITION: A2 presentation of an R-algebra M consists of a set of generators m1, . . . ,mn of M
as an R-module and a set of generators v1, . . . , vm ∈ Rn for the submodule of R-linear relations on
m1, . . . ,mn. We call the n×m matrix with columns v1, . . . , vm a presentation matrix for M .

LEMMA: If M is an R-module, and A an n×m presentation matrix3 for M , then M ∼= Rn/im(A).
We call the module Rn/im(A) the cokernel of the matrix A.

(1)(1) Let M be an R-module and m1, . . . ,mn ∈M .
(a)(a) Briefly explain why the characterizations of the submodule generated by S are equivalent.
(b)(b) Briefly explain why

∑
iRmi is the image of the R-module homomorphism β : Rn →M

such4 that β(ei) = mi.
(c)(c) Let I be an ideal of R. How does a generating set of I as an ideal compare to a generating

set of I as an R-module?
(d)(d) Explain why the Lemma above is true.
(e)(e) If M has an a× b presentation matrix A, how many generators and how many (generating)

relations are in the presentation corresponding to A?
(f)(f) What is a presentation matrix for a free module?

(2)(2) Describe Z[
√

2] as a Z-module.

1If S = {m} is a singleton, we just write Rm, and if S = {m1, . . . ,mn}, we may write
∑

i Rmi.
2As written, there is a finite set of generators, and a finite set of generators for their relations. This is called a finite presenta-
tion. One could do the same thing with an infinite generating set and/or infinite generating set for the relations.

3im(A) denotes the image or column space of A in Rn. This is equal to the module generated by the columns of A.
4where ei is the vector with ith entry one and all other entries zero.



(3)(3) Module structure for polynomial rings and quotients:
(a)(a) Let R = A[X] be a polynomial ring. Give a generating set for R as an A-module. Is R a

free A-module?
(b)(b) Let R = A[X, Y ] be a polynomial ring. Give a generating set for R as an A-module. Is R a

free A-module?
(c)(c) Let R = A[X]/(f), where f is a monic polynomial of top degree d. Apply the Division

Algorithm to show that R is a free A-module with basis [1], [X], . . . , [Xd−1].
(d)(d) Let R = C[X, Y ]/(Y 3 − iXY + 7X4). Describe R as a C[X]-module, and then give a

C-vector space basis.

(4)(4) Let R = C[X] and S = C[X,X−1] ⊆ C(X). Find a generating set for S as an R-module. Does
there exist a finite generating set for S as an R-module? Is S a free R-module?

(5) Presentations of modules: Let K be a field, and R = K[X, Y ] be a polynomial ring.
(a) Consider the quotient ring K ∼= R/(X, Y ) as an R-module. Find a presentation for K as an

R-module.
(b) Consider the ideal I = (X, Y ) as an R-module. Find a presentation for I as an R-module.
(c) Consider the ideal J = (X2, XY, Y 2) as an R-module. Find a presentation for J as an

R-module.

(6) Let M be an R-module, S ⊆ M a generating set, and r ∈ R. Show that rM = 0 if and only if
rm = 0 for all m ∈ S.

(7) Let K be a field, S = K[X, Y ] be a polynomial ring, and R = K[X2, XY, Y 2] ⊆ S. Find
an R-module M such that S = R ⊕M as R-modules. Given a presentations for S and M as
R-modules.

(8) Messing with presentation matrices: Let M be a module with an n×m presentation matrix A.
(a) If you add a column of zeroes to A, how does M change?
(b) If you add a row of zeroes to A, how does M change?
(c) If you add a row and column to A, with a 1 in the corner and zeroes elsewhere in the new

row and column, how does M change?

(d) If A is a block matrix
[
B 0
0 C

]
, what does this say about M?



§1.5: DETERMINANTS

Recall that given matrices A and B, the matrix product AB consists of linear combinations, namely:
Each column of AB is a linear combinations of the columns of A, with coefficients/weights coming
from the corresponding columns of B. That is,(

col j of AB
)
=

t∑
i=1

bij ·
(
col i of A);

note that b1j, . . . , btj is the j-th column of B.

PROPERTIES OF det: For a ring R, the determinant is a function det : Matn×n(R)→ R such that:
(1) det is a polynomial expression of the entries of A of degree n.
(2) det is a linear function of each column.
(3) det(A) = 0 if the columns are linearly dependent.
(4) det(AB) = det(A) det(B).
(5) det can be computed by Laplace expansion along a row/column.
(6) det(A) = det(Atr).
(7) If φ : R → S is a ring homomorphism, and φ(A) is the matrix obtained from A by applying φ

to each entry, then det(φ(A)) = φ(det(A)).

ADJOINT TRICK: For an n× n matrix A over R,

det(A)1n = AadjA = AAadj,

where (Aadj)ij = (−1)i+j det(matrix obtained from A by removing row j and column i).

EIGENVECTOR TRICK: Let A be an n × n matrix, v ∈ Rn, and r ∈ R. If Av = rv, then
det(r1n − A)v = 0. Likewise, if instead v is a row vector and vA = rv, then det(r1n − A)v = 0.

DEFINITION: Given an n×mmatrixA and 1 ≤ t ≤ min{m,n} the ideal of t× tminors ofA, denoted
It(A), is the ideal generated by the determinants of all t× t submatrices of A given by choosing t rows
and t columns. For t = 0, we set I0(A) = R and for t > min{m,n} we set It(A) = 0.

LEMMA: If A is an n×m matrix, B is an m× ` matrix, and t ≤ 1, then
• It+1(A) ⊆ It(A)
• It(AB) ⊆ It(A) ∩ It(B).

PROPOSITION: Let M be a finitely presented module. Suppose that A is an n×m presentation matrix
for M . Then In(A)M = 0. Conversely, if fM = 0, then f ∈ In(A)n.

(1)(1) Let M be a module. Suppose that m1, . . . ,mn is a generating set with corresponding presentation
matrix A. Which of the following is true:

A

m1
...
mn

 ?
= 0

[
m1 · · · mn

]
A

?
= 0.

Explain your answer in terms of the recollection on matrix multiplication above.



(2)(2) Eigenvector Trick:
(a)(a) What familiar fact/facts from linear algebra (over fields) is/are related to the Eigenvector Trick?
(b)(b) Use the Adjoint Trick to prove the Eigenvector Trick.

(3)(3) Show that a square matrix over a ring R is invertible if and only if its determinant is a unit.

(4)(4) Proof of Proposition:
(a)(a) First consider the case m = n. Show that det(A) kills each generator mi, and conclude that

In(A)M = 0.
(b)(b) Now consider the case n ≤ m. Show that for any n× n submatrix A′ of A that det(A′)M = 0,

and conclude that In(A)M = 0. What’s the deal when m < n?
(c)(c) For the “conversely” statement, show that if fM = 0 then there is some matrix B such that

AB = f1n, and deduce that f ∈ In(A)n.

(5) Prove the Lemma above.

(6) Prove1 FITTING’S LEMMA: If A and B are presentation matrices for the same R-module M of size
n×m and n′ ×m′ (respectively), and t ≥ 0, then In−t(A) = In′−t(B).

1Hint: First consider the case when the two presentations have the same generating sets, but different generating sets for the
relations. Reduce to the case where B = [A|v] for a single column v.



§2.6: ALGEBRA-FINITE AND MODULE-FINITE EXTENSIONS

DEFINITION: Let φ : R→ S be a ring homomorphism.
• We say that φ is algebra-finite, or S is algebra-finite over R, if S is a finitely generated R-algebra.
• We say that φ is module-finite, or S is module-finite over R, if S is a finitely generated R-module.
One also often encounters the less self-explanatory terms finite type for algebra-finite, and finite for
module-finite, but we will avoid these.

LEMMA: A module-finite map is algebra-finite. The converse is false.

DEFINITION: Let R be an A-algebra. We say that an element r ∈ R is integral over A if r satisfies a
monic polynomial with coefficients in A.

PROPOSITION: Let R be an A-algebra. If r1, . . . , rn ∈ R are integral over A, then A[r1, . . . , rn] is
module-finite over A.

(1)(1) Algebra-finite vs module-finite: Let φ : A→ R be a ring homomorphism and r1, . . . , rn ∈ R.
(a)(a) Agree or disagree: an A-linear combination of r1, . . . , rn is a special type of polynomial ex-

pression of r1, . . . , rn with coefficients in A.
(b)(b) Explain why R =

∑n
i=1Ari implies R = A[r1, . . . , rn]. Explain why module-finite implies

algebra-finite.
(c)(c) Let R = A[X] be a polynomial ring in one variable over A. Is the inclusion map A ⊆ A[X]

algebra-finite? Module-finite?
(d)(d) Give an example of a map that is module-finite (and hence also algebra-finite).
(e)(e) Give an example of a map that is not algebra-finite (and hence also not module-finite).

(2)(2) Integral elements: Use the definition of integral to determine whether each is integral or not.
(a)(a) An indeterminate X in a polynomial ring A[X], over A.
(b)(b) 3
√
2, over Z.

(c)(c) 1
2
, over Z.

(3)(3) Proof of Proposition: Let A be a ring.
(a)(a) Let f ∈ A[X] be monic, and let T = A[X]/(f). Explain why T is module-finite over A. What

is a generating set?
(b)(b) Let R = A[r] be an algebra generated by one element r ∈ R. Suppose that r satisfies a monic

polynomial f ∈ A[X]. How is R related to the ring T as in part (a)? Must they be equal?
(c)(c) Show that R as in (b) is module-finite over A. What is a generating set?
(d)(d) Let S = A[r1, . . . , rt] with r1, . . . , rt ∈ S integral over A. Use (c) and (4b) below to show that

A→ S is module-finite.

(4) Finiteness conditions and compositions: Let R ⊆ S ⊆ T be rings.
(a) If R ⊆ S and S ⊆ T are algebra-finite, show1 that the composition R ⊆ T is algebra-finite.
(b) If R ⊆ S and S ⊆ T are module-finite, show2 that the composition R ⊆ T is module-finite.

1Hint: If S = R[s1, . . . , sm] and T = S[t1, . . . , tn], apply the definition of “algebra generated by” to
R[s1, . . . , sm, t1, . . . , tn] ⊆ T . Why must the LHS contain S? After that, why must it contain T ?

2Hint: If S =
∑

i Rsi and T =
∑

j Stj , use the “linear combinations” characterization of module generators to show
T =

∑
i,j Rsitj .



(5) Power series rings:
(a) Let A→ R be algebra-finite. Show that R is a countably-generated A-module.
(b) Let A be a ring and R = AJXK be a power series ring over A. Show3 that R is not a countably

generated A-module. Deduce that R is not algebra-finite over A.

(6) Let R ⊆ S ⊆ T be rings.
(a) If R ⊆ T is algebra-finite, must S ⊆ T be? What about R ⊆ S?
(b) If R ⊆ T is module-finite, must S ⊆ T be? What4 about R ⊆ S?

(7) Let R be a ring, and M be an R-module. The Nagata idealization of M in R, denoted R nM , is
the ring that
• as a set and an additive group is just R×M = {(r,m) | r ∈ R,m ∈M}, and
• has multiplication (r,m)(s, n) = (rs, rn+ sm).

Convince yourself that RnM is an R-algebra. Show that R ⊆ RnM is module-finite if and only
if M is a finitely generated R-module.

3Hint: Write [g]≤j for the sum of terms in g of degree at most j. Suppose R =
∑∞

i=1 Afi, and construct g ∈ R such that
[g]≤n2 /∈

∑n
i=1 A[fi]≤n2 .

4Hint: Use a problem below.



§2.7: INTEGRAL EXTENSIONS

DEFINITION: Let φ : A→ R be a ring homomorphism. We say that φ is integral or that R is integral
over A if every element of R is integral over A.

THEOREM: A homomorphism φ : A→ R is module-finite if and only if it is algebra-finite and integral.
In particular, every module-finite extension is integral.

COROLLARY 1: An algebra generated (as an algebra) by integral elements is integral.

COROLLARY 2: If R ⊆ S is integral, and x is integral over S, then x is integral over R.

PROPOSITION: Let R ⊆ S be an integral extension of domains. Then R is a field if and only if S is a
field.

DEFINITION: Let A be a ring, and R be an A-algebra. The integral closure of A in R is the set of
elements in R that are integral over A.

(1)(1) Proof of Theorem:
(a)(a) Very briefly explain why, to prove that module-finite implies integral in general, it suffices to

show the claim for an inclusion A ⊆ R.
(b)(b) Take a module generating set {1, r2, . . . , rn} for R as an A-module, and write it as a row vector

v =
[
1 r2 · · · rn

]
. Let x ∈ R. Explain why there is a matrix M ∈ Matn×n(A) such that

vM = xv.
(c)(c) Apply a TRICK to obtain a monic polynomial over A that x satisfies.
(d)(d) Combine the previous parts with results from last time to complete the proof of the Theorem.

(2)(2) Let R = C[X,X1/2, X1/3, . . . ] ⊆ C(X), where X1/n is an nth root of X . Is C[X] ⊆ R integral1?
Is it module-finite? Is it algebra-finite?

(3)(3) Proof of Corollary 1: Let R be an A-algebra.
(a)(a) If x, y ∈ R are integral over A, explain why A[x, y] ⊆ R is integral over A. Now explain why

x± y and xy are integral over A.
(b)(b) Deduce that the integral closure of A in R is a ring, and moreover an A-subalgebra of R.
(c)(c) Now let S be a set of integral elements. Apply (b) to the ringR = A[S] in place ofR. Complete

the proof of the Corollary.

(4) Proof of Proposition:
(a) First, assume that S is a field, and let r ∈ R be nonzero. Explain why r has an inverse in S.
(b) Take an integral equation for r−1 ∈ S overR, and solve for r−1 in terms of things inR. Deduce

that R must also be a field.
(c) Now, assume that R is a field, and that S is a domain, and let s ∈ S be nonzero. Explain why

R[s] is a finite-dimensional vector space.
(d) Explain why the multiplication by s map from R[s] to itself is surjective. Deduce that S must

also be a field.

(5) Prove Corollary 2.

1You might find the Corollary helpful.



(6) Let A = C[X, Y ] be a polynomial ring, and R =
C[X, Y, U, V ]

(U2 − UX + 3X3, V 2 − 7Y )
. Find an equation

of integral dependence for U + V over A.



§2.8: UFDS AND NORMAL RINGS

DEFINITION: Let R be a domain. The normalzation of R is the integral closure of R in Frac(R). We
say that R is normal if it is equal to its normalization, i.e., if R is integrally closed in its fraction field.

PROPOSITION: If R is a UFD, then R is normal.

LEMMA: A domain is a UFD if and only if
(1) Every nonzero element has a factorization1 into irreducibles, and
(2) Every irreducible element generates a prime ideal.

THEOREM: If R is a UFD, then the polynomial ring R[X] is a UFD.

(1)(1) Use the results above to explain why K[X1, . . . , Xn] (with K a field) and Z[X1, . . . , Xn] are normal.

(2)(2) Prove the Proposition above.

(3)(3) Let K be a module-finite field extension of Q. The ring of integers in K, sometimes denoted OK ,
is the integral closure of Z in K.
(a)(a) What is the ring of integers in Q(

√
2)?

(b)(b) For L = Q(
√
−3), show that 1+

√
−3

2
∈ OL. In particular, OL % Z[

√
−3].

(c)(c) Explain why OK is normal.
(d)(d) Explain why, if Z ⊆ OK is algebra-finite, then OK

∼= Zn as abelian groups for some n ∈ N.
(e)(e) Do we have a theorem that implies Z ⊆ OK is algebra-finite?

(4) Discuss the proof of the Lemma above.

(5) Let K be a field, and R = K[X2, XY, Y 2] ⊆ K[X, Y ]. Prove2 that R is not a UFD, but R is normal.

(6) Prove the Theorem above. You might find it useful to recall the following:
GAUSS’ LEMMA: Let R be a UFD and let K be the fraction field of R.
(a) f ∈ R[X] is irreducible if and only if f is irreducible in K[X] and the coefficients of f have

no common factor.
(b) Let r ∈ R be irreducible, and f, g ∈ R[X]. If r divides every coefficient of fg, then either r

divides every coefficient of f , or r divides every coefficient of g.

(7) Let R be a normal domain, and s be an element of some domain S ⊇ R. Let K be the fraction field
of R. Show that if s is integral over R, then the minimal polynomial of s has all of its coefficients
in R.

1i.e., for any r ∈ R, there exists a unit u and a finite (possibly empty) list of irreducibles a1, . . . , an such that r = ua1 · · · an.
2Hint: Use K[X,Y ] to your advantage.



§2.9: NOETHERIAN RINGS

DEFINITION: A ring R is Noetherian if every ascending chain of ideals I1 ⊆ I2 ⊆ I3 ⊆ · · · eventually
stabilizes: i.e., there is some N such that In = IN for all n ≥ N .

HILBERT BASIS THEOREM: If R is a Noetherian ring, then the polynomial ring R[X] and power series
ring RJXK are also Noetherian.

We will return to the proof of Hilbert Basis Theorem after discussing Noetherian modules next time.

COROLLARY: Every finitely generated algebra over a field is Noetherian.

(1)(1) Equivalences for Noetherianity.
(a)(a) Show1 that R is Noetherian if and only if every ideal is finitely generated.
(b)(b) Show2 that R is Noetherian if and only if every nonempty collection of ideals has a maximal3

element.

(2)(2) Some Noetherian rings:
(a)(a) Show that fields and PIDs are Noetherian.
(b)(b) Show that if R is Noetherian and I ⊆ R, then R/I is Noetherian.
(c)(c) Is4 every subring of a Noetherian ring Noetherian?

(3)(3) Use the Hilbert Basis Theorem to deduce the Corollary.

(4)(4) Some nonNoetherian rings:
(a)(a) Let K be a field. Show that K[X1, X2, . . . ] is not Noetherian.
(b) Let K be a field. Show that K[X,XY,XY 2, . . . ] is not Noetherian.
(c) Show that C([0, 1],R) is not Noetherian.

(5) Let R be a Noetherian ring. Show that for every ideal I , there is some n such that
√
I
n ⊆ I . In

particular, there is some n such that for every nilpotent element z, zn = 0.

(6) Let R be Noetherian. Show that every element of R admits a decomposition into irreducibles.

(7) Prove the principle of Noetherian induction: Let P be a property of a ring. Suppose that “For every
nonzero ideal I , P is true for R/I implies that P is true for R” and P holds for all fields. Then P is
true for every Noetherian ring.

(8) (a) Suppose that every maximal ideal of R is finitely generated. Must R be Noetherian?
(b) Suppose that every ascending chain of prime ideals stabilizes. Must R be Noetherian?
(c) Suppose that every prime ideal of R is finitely generated. Must R be Noetherian?

1For the backward direction, consider
⋃

n∈N In
2Hint: For the forward direction, show the contrapositive.
3This means that if S is our collection of ideals, there is some I ∈ S such that no J ∈ S properly contains I . It does not mean
that there is a maximal ideal in S.

4Hint: Every domain has a fraction field, even the domain from (4a).



§2.10: NOETHERIAN MODULES

DEFINITION: A module is Noetherian if every ascending chain of submodules M1 ⊆ M2 ⊆ M3 ⊆ · · ·
eventually stabilizes: i.e., there is some N such that Mn = MN for all n ≥ N .

THEOREM: If R is a Noetherian ring, then an R-module M is Noetherian if and only M is finitely generated.

COROLLARY: If R is a Noetherian ring, then a submodule of a finitely generated R-module is finitely
generated.

LEMMA: Let M be an R-module and N ⊆ M a submodule. Let L,L′ be two more submodules of M .
Then L = L′ if and only if L ∩N = L′ ∩N and L+N

N
= L′+N

N
.

(1)(1) Equivalences for Noetherianity.
(a)(a) Explain why M is Noetherian if and only if every submodule of M is finitely generated.
(b)(b) Explain why M is Noetherian if and only if every nonempty collection of submodules has a maxi-

mal element.

(2)(2) Submodules and quotient modules: Let N ⊆M .
(a)(a) Show that if M is a Noetherian R-module, then N is a Noetherian R-module.
(b)(b) Show that if M is a Noetherian R-module, then M/N is a Noetherian R-module.
(c)(c) Use the Lemma above to show that if N and M/N are Noetherian R-modules, then M is a Noe-

therian R-module.

(3)(3) Proof of Theorem: Let R be a Noetherian ring.
(a)(a) Explain why R is a Noetherian R-module.
(b)(b) Show that Rn is a Noetherian R-module for every n.
(c)(c) Deduce the Theorem above.
(d)(d) Deduce the Corollary above.

(4)(4) Proof of Hilbert Basis Theorem for R[X]: Let R be a Noetherian ring.
(a)(a) Let I be an ideal of R[X]. Given a nonzero element f ∈ R[X], set LT(f) to be the leading

coefficient1 of f and LT(0) = 0, and let LT(I) = {LT(f) | f ∈ I}. Is LT(I) an ideal of R?
(b)(b) Let f1, . . . , fn ∈ R[X] be such that LT(f1), . . . ,LT(fn) generate LT(I). Let N be the maximum of

the top degrees of fi. Show that every element of I can be written as
∑

i rifi+ g with ri, g ∈ R[X]
and the top degree of g ∈ I is less than N .

(c)(c) Write R[X]<N for the R-submodule of R[X] consisting of polynomials with top degree < N .
Show that I ∩R[X]<N is a finitely generated R-module.

(d)(d) Complete the proof of the Theorem.

(5) Proof of Hilbert Basis Theorem for RJXK: How can you modify the Proof of Hilbert Basis Theorem
for R[X] to work in the power series case? Make it happen!

(6) Prove the Lemma.

(7) Noetherianity and module-finite inclusions: Let R ⊆ S be module-finite.
(a) Without using the Hilbert Basis Theorem, show that is R is Noetherian, then S is Noetherian.
(b) EAKIN-NAGATA THEOREM: Show that if S is Noetherian, then R is Noetherian.

1That is, if f =
∑

i aiX
i and k = max{i | ai 6= 0}, then LT(f) = ak.



§3.11: GRADED RINGS

DEFINITION:
(1) An N-grading on a ring R is

• a decomposition of R as additive groups R =
⊕

d≥0Rd

• such that x ∈ Rd and y ∈ Re implies xy ∈ Rd+e.
(2) An N-graded ring is a ring with an N-grading.
(3) We say that an element x ∈ R in an N-graded ring R is homogeneous of degree d if x ∈ Rd.
(4) The homogeneous decomposition of an element r 6= 0 in an N-graded ring is the sum

r = rd1 + · · ·+ rdk where rdi 6= 0 homogeneous of degree di and d1 < · · · < dk.

The element rdi is the homogeneous component r of degree di.
(5) An ideal I in an N-graded ring is homogeneous if r ∈ I implies every homogenous component

of r is in I . Equivalently, I is homogeneous if can be generated by homogeneous elements.
(6) A homomorphism φ : R→ S between N-graded rings is graded if φ(Rd) ⊆ Sd for all d ∈ N.

DEFINITION: For an abelian semigroup (G,+), one defines G-grading as above with G in place of N
and g ∈ G in place of d ≥ 0. The other definitions above make sense in this context.

DEFINITION: Let K be a field, and R = K[X1, . . . , Xn] be a polynomial ring. Let G be a group acting
on R so that for every g ∈ G, r 7→ g · r is a K-algebra homomorphism. The ring of invariants of G is

RG := {r ∈ R | for all g ∈ G, g · r = r}.

(1)(1) Basics with graded rings: Let R be an N-graded ring.
(a)(a) If f ∈ R is homogeneous of degree a and g ∈ R is homogeneous of degree b, what about f + g

and fg?
(b)(b) Translate the definition of graded ring to explain why every nonzero element has a unique

homogeneous decomposition.
(c)(c) Does every element in R have a degree? What about “top degree” or “bottom degree”?
(d)(d) What is the1 degree of zero?
(e)(e) Suppose that r ∈ (s1, . . . , sm), and r is homogeneous of degree d, and si is homogeneous of

degree di. Explain why we can write r =
∑

i aisi with ai ∈ R homogeneous of degree d− di.

(2)(2) The standard grading on a polynomial ring: Let A be a ring.
(a)(a) Let R = A[X]. Discuss: the decomposition Rd = A ·Xd gives an N-grading on R.
(b)(b) Let R = A[X1, . . . , Xn]. Discuss: the decomposition

Rd =
∑

d1+···+dn=d

A ·Xd1
1 · · ·Xdm

m

gives an N-grading onR. What is the homogeneous decomposition of f = X3
1 + 2X1X2 −X2

3 + 3?
(c)(c) Let R = AJXK. Explain why Rn = A ·Xn does not give an N-grading on R.

(3)(3) Weighted gradings on polynomial rings: Let A be a ring, R = A[X1, . . . , Xn] and a1, . . . , am ∈ N.
(a)(a) Discuss: Rn =

∑
d1a1+···+dmam=n

A ·Xd1
1 · · ·Xdm

m gives an N-grading ofRwhere the degree ofXi is ai.

(b)(b) Can you find a1, a2, a3 such that X2
1 +X3

2 +X5
3 is homogeneous? Of what degree?

1Hint: This is a trick question, but specify exactly how.



(4)(4) The fine grading on polynomial rings: Let A be a ring and R = A[X1, . . . , Xn]. Discuss why

Rd = A ·Xd for d = (d1, . . . , dm) ∈ Nn, where Xd := Xd1
1 · · ·Xdm

m

yields an Nm-grading on R. What are the homogeneous elements?

(5) More basics with graded rings. Let R be N-graded.
(a) Show2 that if e ∈ R is idempotent, then e is homogeneous of degree zero. In particular, 1 is

homogeneous of degree zero.
(b) Show that R0 is a subring of R, and each Rn is an R0-module.
(c) Show that if I is homogeneous, thenR/I is also N-graded where (R/I)n consists of the classes

of homogeneous elements of R of degree n.
(d) Show that I is homogeneous if and only if I is generated by homogeneous elements.
(e) Suppose that φ : R → S is a homomorphism of K-algebras, and that R and S are N-graded

with K contained in R0 and S0. Show that φ is graded if φ preserves degrees for all of the
elements in some homogeneous generating set of R.

(6) Semigroup rings: Let S be a subsemigroup of Nn with operation + and identity (0, . . . , 0). The
semigroup ring of S is

K[S] :=
∑
α∈S

KXα ⊆ R, where Xα := Xα1
1 · · ·Xαn

n .

(a) Show that K[S] is a K-subalgebra that is a graded subring of R in the fine grading.
(b) Let S = 〈4, 7, 9〉 ⊆ N. Draw a picture of S. What is K[S]?
(c) Find a semigroup S ⊆ N2 such that K[S] is Noetherian, and another such that K[S] is not

Noetherian. Draw pictures of these semigroups.
(d) Show that every K-subalgebra that is a graded subring of R in the fine grading is of the form

K[S] for some S.

(7) Homogeneous elements: Let R be an N-graded ring.
(a) Show that R is a domain if and only if for all homogeneous elements x, y, xy = 0 implies

x = 0 or y = 0.
(b) Show that the radical of a homogeneous ideal is homogeneous.

(8) In the setting of the definition of “ring of invariants” suppose that each g ∈ G acts as a graded
homomorphism. Show that RG is an N-graded K-subalgebra of R.

2Hint: If not, write e = e0 + ed +X where e0 has degree zero and ed is the lowest nonzero positive degree component. Apply
uniqueness of homogeneous decomposition to e2 = e and show that 2e0ed = e0ed. . .



§3.12: GRADED MODULES

DEFINITION: Let R be an N-graded ring with graded pieces Ri. A Z-grading on an R-module M is
• a decomposition of M as additive groups M =

⊕
e∈ZMe

• such that r ∈ Rd and m ∈Me implies rm ∈Md+e.
An Z-graded module is a module with a Z-grading. As with rings, we have the notions of homo-
geneous elements of M , the degree of a homogeneous element, homogeneous decomposition of an
arbitrary element of M . A homomorphism φ :M → N between graded modules is degree-preserving
if φ(Me) ⊆ Ne.

GRADED NAK 1: Let R be an N-graded ring, and R+ be the ideal generated by the homogeneous
elements of positive degree. Let M be a Z-graded module. Suppose that M�0 = 0; that is, there is
some n ∈ Z such that Mt = 0 for t ≤ n. Then M = R+M implies M = 0.

GRADED NAK 2: Let R be an N-graded ring and M be a Z-graded module with M�0 = 0. Let N be
a graded submodule of M . Then M = N +R+M if and only if M = N .

GRADED NAK 3: Let R be an N-graded ring and M be a Z-graded module with M�0 = 0. Then a
set of homogeneous elements S ⊆M generates M if and only if the image of S in M/R+M generates
M/R+M as a module over R0

∼= R/R+.

DEFINITION: Let R be an N-graded ring with R0 = K a field. Let M be a a Z-graded module with
M�0 = 0. A set S of homogeneous elements of M is a minimal generating set for M if the image of
S in M/R+M is an K-vector space basis.

(1)(1) Warmup with minimal generating sets.
(a)(a) Note that the definition of “minimal generating set” does not say that it is a generating set. Use

Graded NAK 3 to explain why it is!
(b)(b) Let K be a field and S = K[X, Y ]. Verify that {X2, XY, Y 2} is a minimal generating set of

the ideal I it generates in S.
(c)(c) Let K be a field. Find a minimal generating set of S = K[X, Y ] as a module over the

K-subalgebra R = K[X + Y,XY ].

(2)(2) Proofs of graded NAKs:
(a)(a) Prove Graded NAK 1.
(b)(b) Use Graded NAK 1 to prove Graded NAK 2.
(c)(c) Use Graded NAK 2 to prove Graded NAK 3.

(3)(3) The hypotheses:
(a)(a) Examine your proofs from the previous problem and verify that one direction (each) of Graded

NAK 2 and Graded NAK 3 hold without assuming that R or M is graded.
(b)(b) Let K be a field and R = K[X] with the standard grading. Let M = K[X]/(X − 1). Analyze

the hypotheses and conclusion of Graded NAK 1 for this example.
(c)(c) Let K be a field and R = K[X] with the standard grading. Let M = K[X,X−1]. Analyze the

hypotheses and conclusion of Graded NAK 1 for this example.
(d)(d) Find counterexamples to Graded NAK 3 with M is not graded or not bounded below in degree.



(4) Minimal generating sets: Let R be an N-graded ring with R0 = K a field. Let M be a a Z-graded
module with M�0 = 0.
(a) Explain why every minimal generating set for M has the same cardinality.
(b) Explain why every homogeneous generating set for M contains a minimal generating set for

M . Moreover, explain why any generating set (homogeneous or not) has cardinality at least
that of a minimal generating set.

(c) Explain why “minimal generating set” is equivalent to “homogeneous generating set such that
no proper subset generates”.

(d) Give an example of a finitely generated module N over K[X, Y ] and two generating set S1, S2

for N such that no proper subset of Si generates N , but |S1| 6= |S2|. Compare to the statements
above.

(5) Let R be an N-graded ring with R0 = K a field. Suppose that Rred = R/
√
0 is a domain, and

that f ∈ R is a homogeneous nonnilpotent element of positive degree. Show that R/(f) is reduced
implies that R is a reduced, and hence a domain.



§3.13: FINITENESS THEOREM FOR INVARIANT RINGS

HILBERT’S FINITENESS THEOREM: LetK be a field of characteristic zero, andR = K[X1, . . . , Xn] be
a polynomial ring. Let G be a finite group acting on R by degree-preserving K-algebra automorphisms.
Then the invariant ring RG is algebra-finite over K.

THEOREM: Let R be an N-graded ring. Then R is Noetherian if and only if R0 is Noetherian and R is
algebra-finite over R0.

DEFINITION: Let R ⊆ S be an inclusion of rings. We say that R is a direct summand of S if there is
an R-module homomorphism π : S → R such that π|R = 1R.

PROPOSITION: A direct summand of a Noetherian ring is Noetherian.

LEMMA: Let R be a polynomial ring over a field K. If G is a group acting on R by degree-preserving
K-algebra automorphisms, then

(1) RG is an N-graded K-subalgebra of R with (RG)0 = K.
(2) If in addition, G is finite, and |G| is invertible in K, then RG is a direct summand of R.

(1)(1) Use the Lemma, Proposition, and Theorem to deduce Hilbert’s finiteness Theorem.

(2)(2) Proof of Theorem:
(a)(a) Explain the direction (⇐).
(b)(b) Show that R Noetherian implies R0 is Noetherian.
(c)(c) Let f1, . . . , ft be a homogeneous generating set for R+, the ideal generated by positive degree

elements of R. Show1 by (strong) induction on d that every element of Rd is contained in
R0[f1, . . . , ft].

(d)(d) Conclude the proof of the Theorem.

(3)(3) Proof of Proposition:
(a)(a) Show that if R is a direct summand of S, and I is an ideal of R, then IS ∩R = I .
(b)(b) Complete the proof of the proposition.

(4) Proof of Lemma part (2): Consider r 7→ 1
|G|

∑
g∈G g · r.

(5) Let S3 denote the symmetric group on 3 letters, and let S3 act on R = C[X1, X2, X3] by permuting
variables; i.e., σ is the C-algebra homomorphism given by σ ·Xi = Xσ(i). Show2 that

RS3 = C[X1 +X2 +X3, X1X2 +X1X3 +X2X3, X1X2X3]

and that X1 + X2 + X3, X1X2 + X1X3 + X2X3, X1X2X3 are algebraically independent over C.
What about replacing 3 with n?

(6) Show that a direct summand of a normal ring is normal.

1Hint: Start by writing h ∈ Rd as h =
∑

i rifi with d = deg(ri) + deg(fi) for all i.
2Hint: Order the monomials of R by lexicographic (dictionary) order. Given a homogeneous invariant, can you find an element
of C[X1 +X2 +X3, X1X2 +X1X3 +X2X3, X1X2X3] with the same “first” monomial in that order?



§3.14: REES RINGS AND THE ARTIN-REES LEMMA

DEFINITION: Let R be a ring and I be an ideal. The Rees ring of I is the N-graded R-algebra

R[IT ] :=
⊕
d≥0

IdT d = R⊕ IT ⊕ I2T 2 ⊕ · · ·

with multiplication determined by (aT d)(bT e) = abT d+e for a ∈ Id, b ∈ Ie (and extended by the
distributive law for nonhomogeneous elements). Here In means the nth power of the ideal I in R,
and T is an indeterminate. Equivalently, R[IT ] is the R-subalgebra of the polynomial ring R[T ]
generated by IT , with R[T ] is given the standard grading R[T ]d = R · T d.

DEFINITION: Let R be a ring and I be an ideal. The associated graded ring of I is the N-graded
ring

grI(R) :=
⊕
d≥0

(Id/Id+1)T d = R/I ⊕ (I/I2)T ⊕ (I2/I3)T 2 ⊕ · · ·

with multiplication determined by (a+ Id+1T d)(b+ Ie+1T e) = ab+ Id+e+1 T d+e for a ∈ Id, b ∈ Ie

(and extended by the distributive law). For an element r ∈ R, its initial form in grI(R) is

r∗ :=

{
(r + Id+1)T d if r ∈ Id r Id+1

0 if r ∈
⋂

n≥0 I
n.

ARTIN-REES LEMMA: Let R be a Noetherian ring, I an ideal of R, M a finitely generated mod-
ule, and N ⊆ M a submodule. Then there is a constant1 c ≥ 0 such that for all n ≥ c, we
have InM ∩N ⊆ In−cN .

(1)(1) Warmup with Rees rings:
(a)(a) Let R be a ring and I be an ideal. Show that if I = (a1, . . . , an), then R[IT ] = R[a1T, . . . , anT ].
(b)(b) Let K be a field, R = K[X, Y ] and I = (X, Y ). Find K-algebra generators for R[IT ], and

find a relation on these generators.

(2)(2) Warmup with associated graded rings:
(a)(a) Convince yourself that the multiplication given in the definition of grI(R) is well-defined.

After doing this, do not use coset notation for elements of grI(R) and instead write a typical
homogeneous element as something like r T d.

(b)(b) Let K be a field, R = K[X, Y ], and m = (X, Y ). Show that grm(R)d ∼= Rd as K-vector
spaces, and construct a ring isomorphism grm(R) ∼= R.

(c)(c) For the same R, show that the map R → grm(R) given by r 7→ r∗ is not a ring homomor-
phism.

(d)(d) Let K be a field, R = KJX, Y K, and m = (X, Y ). Show2 that grm(R) ∼= K[X, Y ].
(e)(e) What happens in (b) and (d) if we have n variables instead of 2?

(3)(3) Consider the special case of Artin-Rees where M = R, and I = (f) and N = (g).
(a)(a) What does Artin-Rees say in this setting? Express your answer in terms of “divides”.
(b)(b) Take R = Z. Does c = 0 “work” for every f, g ∈ Z? Can you find a sequence of examples

requiring arbitrarily large values of c?

1The constant c depends on I,M, and N but works for all n.
2Yes, the brackets changed. This is not a typo!



(4) Proof of Artin-Rees: Let R be a Noetherian ring, and I be an ideal.
(a) Explain why R[IT ] is a Noetherian ring.
(b) Let M =

∑
i Rmi be a finitely generated R-module. SetM :=

⊕
n≥0 I

nMT n. Show that
this is a graded R[IT ]-module, and thatM =

∑
iR[IT ] ·mi, where in the last equality we

consider mi as the element miT
0 ∈M0.

(c) Given a submodule N of M , setN :=
⊕

n≥0(I
nM ∩N)T n ⊆M. Show thatN is a graded

R[IT ]-submodule ofM.
(d) Show that there exist n1, . . . , nk ∈ N and c1, . . . , ck ≥ 0 such that N =

∑
j R[It] · njT

cj .
(e) Show that c := max{cj} satisfies the conclusion of the Artin-Rees Lemma.

(5) Presentations of associated graded rings: Let R be a ring and I, J be ideals. Set inI(J) to be the
ideal of grI(R) generated by {a∗ | a ∈ J}.
(a) Show that grI(R/J) ∼= grI(R)/in(J).
(b) If J = (f) is a principal ideal, show that inI(J) = (f ∗).
(c) Is inI((f1, . . . , ft)) = (f ∗

1 , . . . , f
∗
t ) in general?

(d) Compute gr(x,y,z)

(
KJX, Y, ZK

(X2 +XY + Y 3 + Z7)

)
.

(6) Properties of associated graded rings: Let R be a ring and I be an ideal such that
⋂

n≥0 I
n = 0.

(a) Show that if grI(R) is a domain, then so is R.
(b) Show that if grI(R) is reduced, then so is R.
(c) What about the converses of these statements?

(7) Show that for the ideal I = (X, Y )2 in R = K[X, Y ], the Rees ring R[IT ] has defining relations
of degree greater than one.



§4.15: NOETHER NORMALIZATION AND ZARISKI’S LEMMA

NOETHER NORMALIZATION: Let K be a field, and R be a finitely-generated K-algebra.
Then there exists a finite1 set of elements f1, . . . , fm ∈ R that are algebraically independent
over K such that K[f1, . . . , fm] ⊆ R is module-finite; equivalently, there is a module-finite
injectiveK-algebra map from a polynomial ringK[X1, . . . , Xm] ↪→ R. Such a ring S is called
a Noether normalization for R.

LEMMA: Let A be a ring, and F ∈ R := A[X1, . . . , Xn] be a nonzero polynomial. Then there
exists an A-algebra automorphism φ of R such that φ(F ), viewed as a polynomial in Xn with
coefficients in A[X1, . . . , Xn−1], has top degree term aX t

n for some a ∈ Ar 0 and t ≥ 0.
• If A = K is an infinite field, one can take φ(Xn) = Xn and φ(Xi) = Xi + λiXn for

some λ1, . . . , λn−1 ∈ K.
• In general, if the top degree of F (with respect to the standard grading) is D, one can

take φ(Xn) = Xn and φ(Xi) = Xi +XDn−i

n for i < n.

ZARISKI’S LEMMA: An algebra-finite extension of fields is module-finite.

USEFUL VARIATIONS ON NOETHER NORMALIZATION:
• NN FOR DOMAINS: Let A ⊆ R be an algebra-finite inclusion of domains2. Then there

exists a ∈ A r 0 and f1, . . . , fm ∈ R[1/a] that are algebraically independent over
A[1/a] such that A[1/a][f1, . . . , fm] ⊆ R[1/a] is module-finite.
• GRADED NN: Let K be an infinite field, and R be a standard graded K-algebra.

Then there exist algebraically independent elements L1, . . . , Lm ∈ R1 such that
K[L1, . . . , Lm] ⊆ R is module-finite.
• NN FOR POWER SERIES: LetK be an infinite field, andR = KJX1, . . . , XnK/I . Then

there exists a module-finite injection KJY1, . . . , YmK ↪→ R for some power series ring
in m variables.

(1)(1) Examples of Noether normalizations: Let K be a field.

(a)(a) Show that K[x, y] is a Noether normalization of R =
K[X, Y, Z]

(X3 + Y 3 + Z3)
, where x, y

are the classes of X and Y in R, respectively.

(b)(b) Show that K[x] is not a Noether normalization of R =
K[X, Y ]

(XY )
. Then show that

K[x+ y] ⊆ R is a Noether normalization.
(c)(c) Show that K[X4, Y 4] is a Noether normalization for R = K[X4, X3Y,XY 3, Y 4].

(2)(2) Use Noether Normalization3 to prove Zariski’s Lemma.

1Possibly empty!
2The assumption that R is a domain is actually not necessary, but can’t quite state the general statement yet. We
assume that R is a domain so that there is fraction field of R in which to take R[1/a].

3and a suitable fact about integral extensions. . .



(3)(3) Proof of Noether Normalization (using the Lemma): Proceed by induction on the number
of generators of R as a K-algebra; write R = K[r1, . . . , rn].
(a)(a) Deal with the base case n = 0.
(b)(b) For the inductive step, first do the case that r1, . . . , rn are algebraically independent

over K.
(c)(c) Let α : K[X1, . . . , Xn]→ R be the K-algebra homomorphism such that α(Xi) = ri,

and let φ be aK-algebra automorphism ofK[X1, . . . , Xn]. Let r′i = α(φ(Xi)) for each
i. Explain4 why R = K[r′1, . . . , r

′
n], and for any K-algebra relation F on r1, . . . , rn,

the polynomial φ−1(F ) is a K-algebra relation on r′1, . . . , r
′
n.

(d)(d) Use the Lemma to find a K-subalgebra R′ of R with n − 1 generators such that the
inclusion R′ ⊆ R is module-finite.

(e)(e) Conclude the proof.

(4) Proof of the “general case” of the Lemma:
(a) Where do “base D expansions” fit in this picture?
(b) Consider the automorphism φ from the general case of the Lemma. Show that for a

monomial, we have φ(aXd1
1 · · ·Xdn

n ) is a polynomial with unique highest degree term
aXd1Dn−1+d2Dn−2+···+dn

n .
(c) Can two monomials µ, ν in F , have φ(µ) and φ(ν) with the same highest degree term?
(d) Complete the proof.

(5) Variations on NN.
(a) Adapt the proof of NN to show Graded NN.
(b) Adapt the proof of NN to show NN for domains.
(c) Adapt the proof of NN to show NN for power series.

4Say α′ is the K-algebra map given by α′(Xi) = r′i. Observe that α′ = α ◦ φ. Why is this surjective?



§4.16: NULLSTELLENSATZ

DEFINITION: Let K be a field and R = K[X1, . . . , Xn]. For a set of polynomials S ⊆ R, we
define the zero-set of solution set of S to be

Z(S) := {(a1, . . . , an) ∈ Kn | F (a1, . . . , an) = 0 for all F ∈ S}.

NULLSTELLENSATZ: Let K be an algebraically closed field, and R = K[X1, . . . , Xn] be a
polynomial ring. Let I ⊆ R be an ideal. Then Z(I) = ∅ if and only if I = R is the unit ideal.
Put another way, a set S of multivariate polynomials has a common zero unless there is a “certifi-
cate of infeasibility” consisting of f1, . . . , ft ∈ S and r1, . . . , rt ∈ R such that

∑
i risi = 1.

PROPOSITION: Let K be an algebraically closed field, and R = K[X1, . . . , Xn] be a polynomial
ring. Every maximal ideal of R is of the form mα = (X1 − a1, . . . , Xn − an) for some point
α = (a1 . . . , an) ∈ Kn.

(1)(1) Draw the “real parts” of Z(X2 + Y 2 − 1) and of Z(XY,XZ).

(2)(2) Explain why the Nullstellensatz is definitely false if K is assumed to not be algebraically
closed.

(3)(3) Basics of Z: Let R = K[X1, . . . , Xn] be a polynomial ring.
(a)(a) Explain why, for any system of polynomial equations F1 = G1, . . . , Fm = Gm, the

solution set can be written in the form Z(S) for some set S.
(b)(b) Let S ⊆ T be two sets of polynomials. Show that Z(S) ⊇ Z(T ).
(c)(c) Let I = (S). Show thatZ(I) = Z(S). Thus, every solution set system of any polynomial

equations can be written as Z of some ideal.
(d)(d) Explain the following: every system of equations over a polynomial ring is equivalent to

a finite system of equations.

(4)(4) Proof of Proposition and Nullstellensatz: Let K be an algebraically closed field, and
R = K[X1, . . . , Xn] be a polynomial ring.
(a)(a) Use Zariski’s Lemma to show that for every maximal ideal m ⊆ R, we have R/m ∼= K.
(b)(b) Reuse some old work to deduce the Proposition.
(c)(c) Deduce the Nullstellensatz from the Proposition.
(d)(d) Convince yourself that the “certificate of infeasibility” version follows from the other

one.

(5)(5) Given a system of polynomial equations and inequations

(?) F1 = 0, . . . , Fm = 0 G1 6= 0, . . . , G` 6= 0

come up with a system1 of equations (†) in one extra variable such that (?) has a solution
if and only if (†) has a solution. Thus every equation-and-inequation feasibility problem is
equivalent to a question of the form Z(I) ?

= ∅.

1Hint: λ ∈ K is nonzero if and only if there is some µ such that λµ = 1.



(6) Show that any system of multivariate polynomial equations (or equations and inequations)
over a field K has a solution in some extension field of L if and only if it has a solution
over K.

(7) Let K be a field and R = K[X1, . . . , Xn]. Let L ⊇ K and S = L[X1, . . . , Xn].
(a) Find some f that is irreducible in R but reducible in S for some choice of K ⊆ L.
(b) Show that ifK is algebraically closed and f ∈ R is irreducible, then it is irreducible in S.
(c) Show that if K is algebraically closed and I ⊆ R is prime, then IS is prime.

(8) Show that the statement of the Nullstellensatz holds for the ring of continuous functions from
[0, 1] to R.



§4.17: STRONG NULLSTELLENSATZ

STRONG NULLSTELLENSATZ: Let K be an algebraically closed field, and R = K[X1, . . . , Xn] be
a polynomial ring. Let I ⊆ R be an ideal and f ∈ R a polynomial. Then

f vanishes at every point of Z(I) if and only if f ∈
√
I .

DEFINITION: Let K be a field and R = K[X1, . . . , Xn]. A subvariety of Kn is a set of the form
Z(S) for some set of polynomials S ⊆ R; i.e., a solution set of some system of polynomial equations.

COROLLARY: Let K be an algebraically closed field. There is a bijection

{radical ideals in K[X1, . . . , Xn]} ←→ {subvarieties of Kn}.

(1)(1) Proof of Strong Nullstellensatz:
(a)(a) Show that Z(I) = Z(

√
I), and deduce the (⇐) direction.

(b)(b) Let Y be an extra indeterminate. Show that f vanishes on Z(I) implies that

Z
(
I + (Y f − 1)

)
= ∅ in Kn+1.

(c)(c) What does the Nullstellensatz have to say about that?
(d)(d) Apply the R-algebra homomorphism φ : R[Y ] → frac(R) given by φ(Y ) = 1

f
and clear

denominators.

(2)(2) Strong Nullstellensatz warmup:
(a)(a) Consider the ideal I = (X2 + Y 2) ∈ R[X, Y ] and f = X . Discuss the hypotheses and

conclusion of Strong Nullstellensatz in this example.
(b)(b) Show that1 no power of F = X2 + Y 2 + Z2 is in the ideal

I = (X3 − Y 2Z, Y 7 −XZ3, 3X5 −XY Z − 2Z19) in the ring C[X, Y, Z].

(3)(3) Prove the Corollary.

(4)(4) Let R = C[T ] be a polynomial ring. In this problem, we will show that the ideal of C-algebraic
relations on the elements {T 2, T 3, T 4} is I = (X2

1 −X3, X
2
2 −X1X3).

(a)(a) Let φ : C[X1, X2, X3]→ C[T ] be the C-algebra map X1 7→ T 2, X2 7→ T 3, X3 7→ T 4. Show
that I ⊆ ker(φ).

(b)(b) Show thatZ(I) ⊆ {(λ2, λ3, λ4) ∈ C3 | λ ∈ C)} ⊆ Z(ker(φ)), and deduce that ker(φ) ⊆
√
I .

(c)(c) Show that I is prime2, and complete the proof.

(5) Let K be an algebraically closed field and R = K

[
X11 X12

X21 X22

]
be a polynomial ring. Use the

Strong Nullstellensatz to show that any polynomial F (X11, X12, X21, X22) that vanishes on every

matrix of rank at most one is a multiple of det
[
X11 X12

X21 X22

]
.

1Hint: You just need to find one point. One, one, one. . .
2Show C[X1, X2, X3]/I is a domain by simplifying the quotient.



(6) We say that a subvariety of Kn is irreducible if it cannot be written as a union of two proper
subvarities. Show that the bijection from the Corollary restricts to a bijection

{prime ideals in K[X1, . . . , Xn]} ←→ {irreducible subvarieties of Kn}.

(7) Use the Strong Nullstellensatz to show that, in a finitely generated algebra over an algebrically
closed field, every radical ideal can be written as an intersection of maximal ideals.



§4.18: SPECTRUM OF A RING

DEFINITION: Let R be a ring, and I ⊆ R an ideal of R.
• The spectrum of a ring R, denoted Spec(R), is the set of prime ideals of R.
• We set V (I) := {p ∈ Spec(R) | I ⊆ p}, the set of primes containing I .
• We set D(I) := {p ∈ Spec(R) | I 6⊆ p}, the set of primes not containing I .
• More generally, for any subset S ⊆ R, we define V (S) and D(S) analogously.

DEFINITION/PROPOSITION: The collection {V (I) | I an ideal ofR} is the collection of closed
subsets of a topology on R, called the Zariski topology; equivalently, the open sets are D(I)
for I an ideal of R.

DEFINITION: Let φ : R → S be a ring homomorphism. Then the induced map on Spec
corresponding to φ is the map φ∗ : Spec(S)→ Spec(R) given by φ∗(p) := φ−1(p).

LEMMA: Let p be a prime ideal. Let Iλ, J be ideals.
(1)

∑
λ Iλ ⊆ p⇐⇒ Iλ ⊆ p for all λ.

(2) IJ ⊆ p⇐⇒ I ⊆ p or J ⊆ p
(3) I ∩ J ⊆ p⇐⇒ I ⊆ p or J ⊆ p
(4) I ⊆ p⇐⇒

√
I ⊆ p

(1)(1) The spectrum of some reasonably small rings.
(a)(a) Let R = Z be the ring of integers.

(i)(i) What are the elements of Spec(R)? Be careful not to forget (0)!
(ii)(ii) Draw a picture Spec(R) (with · · · since you can’t list everything) with a line

going up from p to q if p ⊂ q.
(iii)(iii) Describe the sets V (I) and D(I) for any ideal I .

(b)(b) Same questions for R = K a field.
(c)(c) Same questions for the polynomial ring R = C[X].
(d)(d) Same questions1 for the power series ring R = KJXK for a field K.

(2)(2) More Spectra.
(a)(a) Let R = C[X, Y ] be a polynomial ring in two variables. Find some maximal ideals,

the zero ideal, and some primes that are neither. Draw a picture like the ones from the
previous problem to illustrate some containments between these.

(b)(b) Let R be a ring and I be an ideal. Use the Second Isomorphism Theorem to give a
natural bijection between Spec(R/I) and V (I).

(c)(c) Let R =
C[X, Y ]

(XY )
. Let x = [X] and y = [Y ].

(i)(i) Use the definition of prime ideal to show that Spec(R) = V (x) ∪ V (y).
(ii)(ii) Use the previous problem to completely describe V (x) and V (y).

(iii)(iii) Give a complete description/picture of Spec(R).

1Spoiler: The only primes are (0) and (X). To prove it, show/recall that any nonzero series f can be written as
f = Xnu for some unit u ∈ KJXK.



(3)(3) Let R be a ring.
(a)(a) Show that for any subset S of R, V (S) = V (I) where I = (S).
(b)(b) Translate the lemma to fill in the blanks:

V (I) V (
√
I)

V (
∑
λ

Iλ) V (Iλ)

V (f1, . . . , fn) V (f1) · · · V (fn)

V (IJ) V (I) V (J)

V (I ∩ J) V (I) V (J)

D(I) D(
√
I)

D(
∑
λ

Iλ) D(Iλ)

D(f1, . . . , fn) D(f1) · · · D(fn)

D(IJ) D(I) D(J)

D(I ∩ J) D(I) D(J)
(c)(c) Use the above to verify that the Zariski topology indeed satisfies the axioms of a

topology.

(4) The induced map on Spec: Let φ : R→ S be a ring homomorphism.
(a) Show that for any prime ideal q ⊆ S, the ideal φ∗(q) = φ−1(q) is a prime ideal of R.
(b) Show that for any ideal I ∈ R, we have

(φ∗)−1(V (I)) = V (IS) and (φ∗)−1(D(I)) = D(IS).

(c) Show that φ∗ is continuous.
(d) If φ : R→ R/I is quotient map, describe φ∗.

(5) Let R and S be rings. Describe Spec(R× S) in terms of Spec(R) and Spec(S).

(6) Properties of Spec(R).
(a) Show that for any ring R, the space Spec(R) is compact.
(b) Show that if Spec(R) is Hausdorff, then every prime of R is maximal.
(c) Show that Spec(R) ∼= Spec(R/

√
0).

(7) Let K be a field, and R =
K[X1, X2, . . . ]

({Xi −XiXj | 1 ≤ i ≤ j})
. Describe Spec(R) as a set and as

a topological space.



§4.19: SPECTRUM AND RADICAL IDEALS

FORMAL NULLSTELLENSATZ: Let R be a ring, I an ideal, and f ∈ R. Then V (f) ⊇ V (I) if
and only if f ∈

√
I .

COROLLARY 1: Let R be a ring. There is a bijection

{radical ideals in R} ←→ {closed subsets of Spec(R)}.

DEFINITION: Let R be a ring and I an ideal. A minimal prime of I is a prime p that contains I ,
and is minimal among primes containing I . We write Min(I) for the set of minimal primes of I .

LEMMA: Every prime that contains I contains a minimal prime of I .

COROLLARY 2: Let R be a ring and I be an ideal. Then
√
I =

⋂
p∈Min(I)

p.

DEFINITION: A subset W of a ring R is multiplicatively closed if 1 ∈ W and u, v ∈ W implies
uv ∈ W .

PROPOSITION: Let R be a ring and W be a multiplicatively closed subset. Then every ideal I
such that I ∩W = ∅ is contained in a prime ideal p such that p ∩W = ∅.

(1)(1) Proof of Formal Nullstellensatz and Corollaries.
(a)(a) Show the direction (⇐) of Formal Nullstellensatz.
(b)(b) Verify that W = {fn | n ≥ 0} is a multiplicatively closed set. Then apply the Proposi-

tion to prove the direction (⇒) of Formal Nullstellesatz.
(c)(c) Prove Corollary 1.
(d)(d) Prove the Lemma.
(e)(e) Prove Corollary 2.
(f)(f) What does Corollary 2 say in the special case I = (0)?

(2)(2) Use the Formal Nullstellensatz to fill in the blanks:

f is nilpotent ⇐⇒ V (f) = ⇐⇒ D(f) = .

What property replaces “nilpotent” if you swap the blanks for V and D above?

(3)(3) Prove1 the Proposition.

(4) Let R be a ring. Show2 that Spec(R) is connected as a topological space if and only if
R 6∼= S × T for rings3 S, T .

1Hint: Take an ideal maximal among those that don’t intersect W .
2Start with the (⇒) direction. For the other direction, use CRT.
3Recall that the zero ring is not a ring.



§5.20: LOCAL RINGS AND NAK

DEFINITION: A ring is local if it has a unique maximal ideal. We write (R,m) for a local ring to
denote the ring R and the maximal ideal m; we many also write (R,m, k) to indicate the residue field
k := R/m.

GENERAL NAK: Let R be a ring, I an ideal, and M be a finitely generated module. If IM = M ,
then there is some a ∈ R such that a ≡ 1 mod I and aM = 0.

LOCAL NAK 1: Let (R,m) be a local ring and M be a finitely generated module. If M = mM ,
then M = 0.

LOCAL NAK 2: Let (R,m) be a local ring and M be a finitely generated module. Let N be a
submodule of M . Then M = N +mM if and only if M = N .

LOCAL NAK 3: Let (R,m, k) be a local ring and M be a finitely generated module. Then a set
of elements S ⊆ M generates M if and only if the image of S in M/mM generates M/mM as a
k-vector space.

DEFINITION: Let (R,m, k) be a local ring and M be a finitely generated module. A set of elements
S of M is a minimal generating set for M if the image of S in M/mM is a basis for M/mM as a
k-vector space.

(1)(1) Local rings.
(a)(a) Show that for a ring R the following are equivalent:

• R is a local ring.
• The set of all nonunits forms an ideal.
• The set of all nonunits is closed under addition.

(b)(b) Show that if A is a domain then A[X] is not a local ring.
(c)(c) Show that if K is a field, the power series ring R = KJX1, . . . , XnK is a local ring.
(d)(d) Let p ∈ Z be a prime number, and Z(p) ⊆ Q be the set of rational numbers that can be

written with denominator not a multiple of p. Show that (Z(p), pZ(p)) is a local ring.
(e)(e) Show that any quotient of a local ring is also a local ring.

(2)(2) General NAK implies Local NAKs
(a)(a) Show that General NAK implies Local NAK 1.
(b)(b) Briefly1 explain why Local NAK 1 implies Local NAK 2.
(c)(c) Briefly2 explain why Local NAK 2 implies Local NAK 3.
(d)(d) Use Local NAK 3 to briefly explain why a minimal generating set is a generating set, and

that, in this setting, any generating set contains a minimal generating set.

(3)(3) Proof of General NAK: Let M =
∑n

i=1Rmi. Set v to be the row vector [m1, . . . ,mn].
(a)(a) Suppose that IM = M . Explain why there is an n× n matrix A with entries in I such that

vA = v.
(b)(b) Apply a TRICK and complete the proof.

1Reuse an old argument in a similar setting.
2It’s déjà vu all over again.



(4) Let (R,m) be a local ring, f ∈ R not a unit, and M be a nonzero finitely generated module.
Show that there is some element of M that is not a multiple of f .

(5) Applications of NAK.
(a) Let R be a ring and I be a finitely generated ideal. Show that if I2 = I then there is some

idempotent e such that I = (e).
(b) Find a counterexample to (a) if I is not assumed to be finitely generated.
(c) Let (R,m) be a Noetherian local ring and M be a finitely generated module. Show that⋂

n≥1m
nM = 0.

(d) Find a counterexample to (c) if (R,m) is still Noetherian local but M is not finitely gener-
ated.

(e) Find a counterexample to (c) if (R,m) with M = R, m is a maximal ideal, but R is not
necessarily Noetherian and local.

(f) Let R be a Noetherian ring, and M a finitely generated module. Let φ : M → M be a
surjective R-module homomorphism. Show3 that φ must also be injective.

(g) Let (R,m) be a local ring. Suppose that Rred := R/
√
0 is a domain, and that there is some

f ∈ R such that R/fR is reduced (and nonzero). Show that R is reduced (and hence a
domain).

3Hint: Take a page from the 818 playbook and give M an R[X]-module structure.



§5.21: LOCALIZATION OF RINGS

DEFINITION: Let R be a ring and W a multiplicatively closed subset with 0 /∈ W . The localization
W−1R is the ring with

• elements equivalence classes of (r, w) ∈ R×W , with the class of (r, w) denoted as
r

w
.

• with equivalence relation
s

u
=

t

v
if there is some w ∈ W such that w(sv − tu) = 0,

• addition given by
s

u
+

t

v
=

sv + tu

uv
, and

• multiplication given by
s

u

t

v
=

st

uv
.

(If 0 ∈ W , then W−1R := 0, which by our convention is not a ring.)

DEFINITION: Let R be a ring.
• If f ∈ R is nonnilpotent1, then Rf := {1, f, f 2, . . . }−1R.
• If p ⊆ R is a prime ideal then Rp := (Rr p)−1R.
• The total quotient ring of R is Frac(R) := {w ∈ R | w is a nonzerodivisor}−1R.

For a ring R, multiplicative set W 63 0, and an ideal I , we define

W−1I :=
{ a

w
∈ W−1R | a ∈ I

}
.

THEOREM: Let R be a ring and W be a multiplicatively closed subset. Then the map induced on
Spec corresponding to the natural map R→ W−1R yields a homeomorphism into its image:

Spec(W−1R) ∼= {p ∈ Spec(R) | p ∩W = ∅}.

LEMMA: Let R be a ring and W be a multiplicatively closed subset.
(1) For any ideal I ⊆ R, W−1I = I(W−1R).
(2) For any ideal I ⊆ R, W−1I ∩R = {r ∈ R | ∃w ∈ W : wr ∈ I}.
(3) For any ideal J ⊆ W−1R, W−1(J ∩R) = J .
(4) For any prime ideal p ⊆ R with2 p ∩W = ∅, W−1p is prime.

(1)(1) Computing localizations
(a)(a) What is the natural ring homomorphism R→ W−1R?
(b)(b) Show that the kernel of R→ W−1R is W0 := {r ∈ R | ∃w ∈ W : wr = 0}.
(c)(c) If every element of W is a nonzerodivisor, explain why the equivalence relation on W−1R

simplifies to s
u

= t
v

if and only if sv = tu.
(d)(d) If R is a domain, explain why Frac(R) is the usual fraction field of R.
(e)(e) If R is a domain, explain why W−1R is a subring of the fraction field of R. Which subring?
(f)(f) Let R = R/W0 and W be the image of W in R. Show that W−1R ∼= W

−1
R.

1If f is nilpotent, 0 ∈ {1, f, f2, . . . } so Rf = 0.
2If W ∩ p 3 a, then W−1p 3 a

a = 1
1 , so W−1p =W−1R is the improper ideal!



(2)(2) Ideals in localizations: Let R be a ring and W a multiplicatively closed set.
(a)(a) Use the Theorem to show that, if f ∈ R is nonnilpotent, then

Spec(Rf ) ∼= D(f) ⊆ Spec(R).

(b)(b) Use the Theorem to show that, if p ⊆ R is prime, then

Spec(Rp) ∼= {q ∈ Spec(R) | q ⊆ p} =: Λ(p).

Deduce that Rp is always a local ring.
(c)(c) Draw3 a picture of Spec(C[X,Y ]

(XY ) (x,y)
).

(d)(d) Use Part (3) of the Lemma to show that every ideal of W−1R is of the form W−1I for
some ideal I ⊆ R.

(e)(e) Use Part (3) of the Lemma to show that any localization of a Noetherian ring is Noetherian.

(3)(3) Examples of localizations
(a)(a) Describe as concretely as possible the rings Z2 and Z(2) as defined above.
(b)(b) Describe as concretely as possible the rings K[X]X and K[X](X).
(c)(c) Describe as concretely as possible the rings K[X, Y ]X and K[X, Y ](X).

(d)(d) Describe as concretely as possible the rings
(

K[X,Y ]
(XY )

)
x

and
(

K[X,Y ]
(XY )

)
(x)

.

(e)(e) Describe as concretely as possible
(

K[X,Y ]
(X2)

)
x

and
(

K[X,Y ]
(X2)

)
(x)

.

(4) Prove the Lemma and the Theorem.

(5) Prove the following LEMMA: If V,W are multiplicatively closed sets, then (VW )−1R ∼=
(V
1

)−1(W−1R), where (V
1

)−1 is the image of V in W−1R.

(6) Minimal primes.
(a) Let p be a minimal prime of R. Show that for any a ∈ p, there is some u /∈ p and n ≥ 1

such that uan = 0.
(b) Show that the set of minimal4 primes Min(R) with the induced topology from Spec(R) is

Hausdorff.
(c) Let R = K[X1, X2, X3, . . . ]/({XiXj | i 6= j}). Describe Min(R) as a topological space.

3Recall that Spec(C[X,Y ]
(XY ) ) consists of {(x), (y), (x, y − α), (x− β, y) | α, β ∈ C}.

4Min(R) denotes the set of primes of R that are minimal. This is the same as Min(0) in our notation of minimal primes of
an ideal; this conflict of notation is standard.



§5.22: LOCALIZATION OF MODULES

DEFINITION: Let R be a ring, M an R-module, and W a multiplicatively closed subset. The
localization W−1M is the W−1R-module1 with

• elements equivalence classes of (m,w) ∈M ×W , with the class of (m,w) denoted as
m

w
.

• with equivalence relation
m

u
=
n

v
if there is some w ∈ W such that w(vm− un) = 0,

• addition given by
m

u
+
n

v
=
vm+ un

uv
, and

• action given by
r

u

m

v
=
rm

uv
.

If α : M → N is a homomorphism of R-modules, then the W−1R-module homomorphism
W−1α : W−1M → W−1N is defined by W−1α(m

w
) = α(m)

w
.

DEFINITION: Let R be a ring and M a module.
• If f ∈ R, then Mf := {1, f, f 2, . . . }−1M .
• If p ⊆ R is a prime ideal then Mp := (Rr p)−1M .

PROPOSITION: Let R be a ring, W a multiplicatively closed set, and N ⊆M be modules. Then
• W−1N is a submodule of W−1M , and

• W−1(M/N) ∼=
W−1M

W−1N
.

COROLLARY: Let R be a ring, I an ideal, and W a multiplicatively closed subset. Then the map
R→ W−1(R/I) induces an order preserving bijection

Spec(W−1(R/I))
∼−→ {p ∈ Spec(R) | p ⊇ I and p ∩W = ∅}.

(1)(1) Let M be an R-module and W be a multiplicatively closed set.
(a)(a) What is the natural map from M → W−1M?
(b)(b) If S is a generating set for M , explain why S

1
= { s

1
| s ∈ S} is a generating set for W−1M .

(c)(c) Let m ∈ M . Show that m
u

is zero in W−1M if and only if there is some w ∈ W such that
wm = 0 in M .

(d)(d) Let m1, . . . ,mt ∈ M be a finite set of elements. Show that m1

u1
, . . . , mt

ut
∈ W−1M are all

zero if and only if there is some w ∈ W that such that wmi = 0 in M for all i.
(e)(e) Let M be a finitely generated module. Show that W−1M = 0 if and only if Mw = 0 for

some w ∈ W .
(f)(f) Let m ∈M and p be a prime ideal. Show that m

1
6= 0 in Mp if and only if p ⊇ annR(m).

(2)(2) Prove the Proposition.

(3)(3) Corollary.
(a)(a) Rewrite the Corollary in the special case W = Rr p for some prime p.
(b)(b) Use the Proposition2 to justify the Corollary.

1If 0 ∈W , then W−1R = 0 is not a ring.
2Hint: You may want to show that, for W ∩ p = ∅, I ⊆ p if and only if W−1I ⊆W−1p. For this, it may help to observe that
W−1p ∩ R = p. You can also use that the isomorphism from the Proposition is a ring isomorphism when R is a ring and I
is an ideal.



(4) Invariance of base: Let φ : R → S be a ring homomorphism, and V ⊆ R and W ⊆ S be multi-
plicatively closed sets such that φ(V ) = W . Show that for any S-module M , V −1M ∼= W−1M .

(5) I’m already local!
(a) Suppose that the action of each w ∈ W on M is invertible: for every w ∈ W the map

m 7→ mw is bijective. Show that M ∼= W−1M via the natural map.
(b) Let R be a ring, m a maximal ideal (so R/m is a field), and M a module such that mM = 0.

Show that M ∼= Mm by the natural map.
(c) More generally, show that3 if for every m ∈ M there is some n such that mnm = 0, then

M ∼= Mm.

(6) Prove the following:
LEMMA: Let R be a ring, W a multiplicatively closed set. Let M be a finitely presented4

R-module, and N an arbitrary R-module. Then for any homomorphism of W−1R-modules
β : W−1M → W−1N , there is some w ∈ W and some R-module homomorphism α : M → N
such that β = 1

w
W−1α.

(a) Given β, show that there exists some u ∈ W such that for every m ∈M , u
1
β(M

1
) ⊆ N

1
.

(b) Let m1, . . . ,ma be a (finite) set of generators for M , and A = [rij] be a corresponding
(finite) matrix of relations. Let n1, . . . , na be an a-tuple of elements of N . Justify: There
exists an R-module homomorphism α : M → N such that α(mi) = ni if and only if
[n1, · · · , na]A = 0.

(c) Complete the proof.

3Hint: Note that R/mn is local with maximal ideal (the image of) m.
4This means that M admits a finite generating set for which the module of relations is also finitely generated.



§5.23: LOCAL PROPERTIES AND SUPPORT

DEFINITION: Let P be a property1 of a ring. We say that
• P is preserved by localization if

P holds for R =⇒ for every multiplicatively closed set W , P holds for W−1R.

• P is a local property if

P holds for R⇐⇒ for every prime ideal p ∈ Spec(R), P holds for Rp.

One defines preserved by localization and local property for properties of modules in the same way,
or for properties of a ring element (where one considers r

1
∈ W−1R or Rp in the right-hand side) or

module element.

DEFINITION: The support of a module M is

{p ∈ Spec(R) |Mp 6= 0}.

PROPOSITION: If M is a finitely generated module, then Supp(M) = V (annR(M)).

(1)(1) Let R be a ring, M be a module, and m ∈M .
(a)(a) Show that2 the following are equivalent:

(i) m = 0 in M ;
(ii) m

1
= 0 in W−1M for all multiplicatively closed W ⊆ R;

(iii) m
1
= 0 in Mp for all p ∈ Spec(R);

(iv) m
1
= 0 in Mm for all m ∈ Max(R).

(b)(b) Deduce that “= 0” (as a property of a module element) is preserved by localization, and a local
property.

(c)(c) Show that the “= 0” locus (as a property of a module element) of m ∈M is D(annR(m)).

(2)(2) Let R be a ring, M be a module.
(a)(a) Show that the following are equivalent, and deduce that “= 0” (as a property of a module) is

preserved by localization, and a local property.
(i) M = 0

(ii) W−1M = 0 for all multiplicatively closed W ⊆ R;
(iii) Mp = 0 for all p ∈ Spec(R);
(iv) Mm = 0 for all m ∈ Max(R).

(b)(b) Prove3 the Proposition.

(3)(3) More local properties
(a)(a) Let R be a ring and N ⊆M modules. Show4 that the following are equivalent, and deduce that

M = N for a submodule N is preserved by localization and a local property:
(i) M = N .

(ii) W−1M = W−1N for all multiplicatively closed W ⊆ R;
(iii) Mp = Np for all p ∈ Spec(R);
(iv) Mm = Nm for all m ∈ Max(R).

1For example, two properties of a ring are “is reduced” or “is a domain”.
2Hint: Go (i)⇒(ii)⇒(iii)⇒(iv)⇒(i). For the last, If m 6= 0, consider a maximal ideal containing annR(m).
3Recall that if M =

∑
iRmi is finitely generated then W−1M =

∑
iW
−1Rmi

1 and that an element annihilates a module if and
only if it annihilates every generator in a generating set.

4Hint: Consider M/N .



(b)(b) Let R be a ring. Show that the following are equivalent:
(i) R is reduced

(ii) W−1R is reduced for all multiplicatively closed W ⊆ R;
(iii) Rp is reduced for all p ∈ Spec(R).
(iv) Rm is reduced for all m ∈ Max(R).

(4) Not so local.
(a) Show that the property R is a domain is preserved by localization.
(b) Let K be a field and R = K ×K. Show that Rp is a field for all p ∈ Spec(R). Conclude that

the property that R is a domain (or R is a field) is not a local property.

(5) More local properties, or not.
(a) Let M be an R-module. Show that the property that M is finitely generated is preserved by

localization but is not5 a local property.
(b) Let R ⊆ S be an inclusion of rings. Show that the properties that R ⊆ S is algebra-finite/integral/module-

finite are preserved by localization on R: i.e., if one of these holds, the same holds for W−1R ⊆
W−1S for any W ⊆ R multiplicatively closed.

(c) Let R ⊆ S be an inclusion of rings, and s ∈ S. Show that the property that s ∈ S is integral
over R is a local property on R: i.e., this holds if and only if it holds for s

1
∈ Sp over Rp for each

p ∈ Spec(R).
(d) Is the property that r ∈ R is a unit a local property?
(e) Is the property that r ∈ R is a zerodivisor a local property?
(f) Is the property that r ∈ R is nilpotent a local property?
(g) Let R ⊆ S be an inclusion of rings. Are the properties R ⊆ S is algebra-finite/module-finite

local properties on R?

(6) Let P be a local property of a ring, and f1, . . . , ft ∈ R such that (f1, . . . , ft) = R. Show that if P
holds for each Rfi , then P holds for R.

5Hint: Consider
⊕

α∈C C[X]/(X − α)


