PROPOSITION: Let R be a Noetherian ring, and \mathfrak{p} an ideal of height h. Then there exist $f_1, \ldots, f_h \in \mathbb{R}$ such that \mathfrak{p} is a minimal prime of (f_1, \ldots, f_h) .

THEOREM: Let (R, \mathfrak{m}) be a Noetherian local ring. Then

$$\dim(R) = \min\left\{t \ge 0 \mid \exists f_1, \dots, f_t \in R \text{ such that } \mathfrak{m} = \sqrt{(f_1, \dots, f_t)}\right\}.$$

(1) Deduce the Theorem from the Proposition.

The dimension of R is the height of \mathfrak{m} . By the Proposition, \mathfrak{m} is a minimal prime of a d-generated ideal I. But, no other prime \mathfrak{p} can be minimal over I, since any other prime satisfies $\mathfrak{p} \subsetneq \mathfrak{m}$, and $I \subseteq \mathfrak{p}$ contradicts that \mathfrak{m} is a minimal prime. Then $Min(I) = {\mathfrak{m}}$ implies $\sqrt{I} = \mathfrak{m}$.

(2) Let K be a field, and $R = \left(\frac{K[X, Y, Z]}{(XY, XZ)}\right)_{(x,y,z)}$. Verify that $\dim(R) = 2$ and $\sqrt{(y, x+z)} = (x, y, z)$.

Since $Min(R) = \{(x), (y, z)\}$ we have $dim(R) = \max\{dim(R/(x)), dim(R/(y, z))\} = \max\{2, 1\} = 2.$ Note that $x^2 = x(x + z)$ and $z^2 = z(x + z)$, so $(x, y, z) \subseteq \sqrt{(y, x + z)}$ and equality must hold.

(3) Let R be a Noetherian ring, and $\mathbf{f} = f_1, \dots, f_t \in R$ be a sequence of elements in R. For convenience¹, let us say that \mathbf{f} is a "*min-avoiding sequence*" if

$$f_1 \notin \bigcup_{\mathfrak{p} \in \operatorname{Min}((0))} \mathfrak{p}, \qquad f_2 \notin \bigcup_{\mathfrak{p} \in \operatorname{Min}((f_1))} \mathfrak{p}, \qquad f_3 \notin \bigcup_{\mathfrak{p} \in \operatorname{Min}((f_1, f_2))} \mathfrak{p}, \qquad \dots \quad \text{, and} \quad f_t \notin \bigcup_{\mathfrak{p} \in \operatorname{Min}((f_1, \dots, f_{t-1}))} \mathfrak{p};$$

and let us say that f is a "height sequence" if

height
$$((f_1)) = 1$$
, height $((f_1, f_2)) = 2$, ..., and height $((f_1, f_2, \dots, f_t)) = t$.

Prove that **f** is a min-avoiding sequence if and only if **f** is a height sequence.

Suppose that **f** is a "min-avoiding sequence". Then f_1 is not in any minimal prime of R, so every prime containing f_1 has height at least one, and by PIT, every minimal prime of f_1 at height at most one, so every minimal prime of f_1 has height exactly one. Then, proceeding inductively, assume that (f_1, \ldots, f_j) has height j. By KHT, every minimal prime of (f_1, \ldots, f_j) then has height j. By assumption f_{j+1} is not in any minimal prime of (f_1, \ldots, f_j) . Let **q** be a minimal prime of (f_1, \ldots, f_{j+1}) . Then **q** contains (f_1, \ldots, f_j) , hence contains some minimal prime **p** of (f_1, \ldots, f_j) , and since

¹The terms "*min-avoiding sequence*" and "*height sequence*" are not real, and have just been made up here to simplify the discussion.

 $f_{j+1} \notin \mathfrak{p}$, we must have $\mathfrak{q} \supseteq \mathfrak{p}$. Thus $\operatorname{height}(\mathfrak{q}) > \operatorname{height}(\mathfrak{p}) = j$. But by KHT, $\operatorname{height}(\mathfrak{q}) \leq j+1$, so equality most hold. Thus, **f** is a "height sequence".

Now suppose that **f** is a "height sequence". Then f_1 is not in any minimal prime of R, by definition of height. Suppose for some j that f_{j+1} is some minimal prime \mathfrak{p} of (f_1, \ldots, f_j) . Since the height of (f_1, \ldots, f_j) is j, \mathfrak{p} has height at least j, but also at most j by KHT, so height(\mathfrak{p}) = j. But $f_{j+1} \in \mathfrak{p}$ implies $(f_1, \ldots, f_{j+1}) \subseteq \mathfrak{p}$, and thus height($(f_1, \ldots, f_{j+1})) \leq$ height(\mathfrak{p}) = j, contradicting that we have a hight sequence. We conclude that f_{j+1} is not in any minimal prime of (f_1, \ldots, f_j) ; i.e., that **f** is a "min-avoiding sequence".

(4) Let R be a Noetherian ring and p a prime of height h. Prove that there exists a min-avoiding sequence of h elements in p, and deduce the Proposition.

If \mathfrak{p} has height 0, then the empty sequence vacuously works. Otherwise, to construct such a sequence inductively, for j < h, we choose $f_{j+1} \in \mathfrak{p}$ but not in any minimal prime of (f_1, \ldots, f_j) . To see that this is possible, note that $f_1, \ldots, f_j \in \mathfrak{p}$ so $(f_1, \ldots, f_j) \subseteq \mathfrak{p}$, and the minimal primes of (f_1, \ldots, f_j) are primes contained in \mathfrak{p} of height j < h, so are properly contained in \mathfrak{p} . Since there are finitely many such minimal primes, by prime avoidance, we know that \mathfrak{p} is not contained in the union of these primes. Thus, we can pick f_{j+1} is required.

Now, every minimal prime of (f_1, \ldots, f_h) has height h, and $(f_1, \ldots, f_h) \subseteq \mathfrak{p}$. Thus, there is a minimal prime of (f_1, \ldots, f_h) contained in \mathfrak{p} of height h, but for height reasons, these must be equal. That is, \mathfrak{p} is a minimal prime of (f_1, \ldots, f_h) .

(5) Let R be a Noetherian ring of dimension d and I an arbitrary ideal.

- (a) Show that if R is local, then there exist $f_1, \ldots, f_d \in R$ such that $\sqrt{(f_1, \ldots, f_d)} = \sqrt{I}$.
- (b) Show that, in general, there exist $f_1, \ldots, f_{d+1} \in R$ such that $\sqrt{(f_1, \ldots, f_{d+1})} = \sqrt{I}$.