PROPOSITION: Let R be a Noetherian ring, and \mathfrak{p} an ideal of height h. Then there exist $f_1, \ldots, f_h \in \mathbb{R}$ such that \mathfrak{p} is a minimal prime of (f_1, \ldots, f_h) .

THEOREM: Let (R, \mathfrak{m}) be a Noetherian local ring. Then

$$\dim(R) = \min\left\{t \ge 0 \mid \exists f_1, \dots, f_t \in R \text{ such that } \mathfrak{m} = \sqrt{(f_1, \dots, f_t)}\right\}.$$

(1) Deduce the Theorem from the Proposition.

- (2) Let K be a field, and $R = \left(\frac{K[X, Y, Z]}{(XY, XZ)}\right)_{(x,y,z)}$. Verify that $\dim(R) = 2$ and $\sqrt{(y, x+z)} = (x, y, z)$.
- (3) Let R be a Noetherian ring, and $\mathbf{f} = f_1, \dots, f_t \in R$ be a sequence of elements in R. For convenience¹, let us say that \mathbf{f} is a "*min-avoiding sequence*" if

$$f_1 \notin \bigcup_{\mathfrak{p} \in \operatorname{Min}((0))} \mathfrak{p}, \qquad f_2 \notin \bigcup_{\mathfrak{p} \in \operatorname{Min}((f_1))} \mathfrak{p}, \qquad f_3 \notin \bigcup_{\mathfrak{p} \in \operatorname{Min}((f_1, f_2))} \mathfrak{p}, \qquad \text{, and } f_t \notin \bigcup_{\mathfrak{p} \in \operatorname{Min}((f_1, \dots, f_{t-1}))} \mathfrak{p};$$

and let us say that f is a "height sequence" if

height $((f_1)) = 1$, height $((f_1, f_2)) = 2$, ..., and height $((f_1, f_2, \dots, f_t)) = t$.

Prove that f is a min-avoiding sequence if and only if f is a height sequence.

- (4) Let R be a Noetherian ring and p a prime of height h. Prove that there exists a min-avoiding sequence of h elements in p, and deduce the Proposition.
- (5) Let R be a Noetherian ring of dimension d and I an arbitrary ideal.
 - (a) Show that if R is local, then there exist $f_1, \ldots, f_d \in R$ such that $\sqrt{(f_1, \ldots, f_d)} = \sqrt{I}$.
 - (b) Show that, in general, there exist $f_1, \ldots, f_{d+1} \in R$ such that $\sqrt{(f_1, \ldots, f_{d+1})} = \sqrt{I}$.

¹The terms "*min-avoiding sequence*" and "*height sequence*" are not real, and have just been made up here to simplify the discussion.