PRINCIPAL IDEAL THEOREM: Let R be a Noetherian ring and $f \in R$. Then every minimal prime of (f) has height at most one.

KRULL'S HEIGHT THEOREM: Let R be a Noetherian ring and $I = (f_1, \ldots, f_n)$. Then every minimal prime of I has height at most n.

- (1) Use Krull's Height Theorem to deduce the following:
 - (a) Every ideal in a Noetherian ring has finite height.
 - **(b)** Every Noetherian local ring has finite dimension.
 - (c) If R is a finitely generated algebra over a field that is a domain, and $I = (f_1, \ldots, f_t)$ is a proper ideal, then $\dim(R/I) \ge \dim(R) t$.
- (2) Proof of Principal Ideal Theorem:
 - (a) Suppose that the Theorem is false, so there is some Noetherian ring S, some g ∈ S, and some prime q such that q ∈ Min((g)) with height(q) > 1. Show that we can then find a Noetherian local domain (R, m) of dimension greater than one and some f ∈ R such that Min((f)) = {m}. Henceforth, we continue with this notation.
 - **(b)** Explain why R/(f) is Artinian.
 - (c) Let q be a prime between (0) and m. Let $q^{(n)} = q^n R_q \cap R$; recall that, by the Second Uniqueness Theorem for Primary Decomposition, this¹ is the q-primary component of q^n in R in any primary decomposition. Explain why there exists some n such that $q^{(n)}R/(f) = q^{(n+k)}R/(f)$ for all k > 0.
 - (d) Show² that $\mathfrak{q}^{(n)}/\mathfrak{q}^{(n+k)} = f(\mathfrak{q}^{(n)}/\mathfrak{q}^{(n+k)})$ for all k > 0.
 - (e) Show that $q^{(n)} = q^{(n+k)}$ for all k > 0.
 - (f) Show that $0 \neq \bigcap_{n>0} \mathfrak{q}^{(n)}$ from above and $\bigcap_{n>0} \mathfrak{q}^{(n)} \subseteq \bigcap_{n>0} \mathfrak{q}^n R_{\mathfrak{q}} = 0$ from another Theorem to obtain the decisive contradiction.

(3) Proof of Krull Height Theorem: We induce on t.

- (a) Dispatch with the base case.
- **(b)** Fix a chain of primes

$$_{0} \subsetneqq \mathfrak{p}_{1} \subsetneqq \cdots \subsetneqq \mathfrak{p}_{h} = \mathfrak{p}_{h}$$

with p a minimal prime p of $I = (f_1, \ldots, f_t)$. Suppose that $f_1 \in \mathfrak{p}_1$. Apply the inductive hypothesis to $I/(f_1)$ in $R/(f_1)$ and complete the inductive step in this case.

- (c) Use the Principal Ideal Theorem to prove the following: LEMMA: Let R be a Noetherian ring, p ⊊ q ⊊ t be primes and f ∈ t. Then there exists some prime q' such that p ⊊ q' ⊊ t and f ∈ q'.
- (d) Use the Lemma to complete the inductive step in the case $f_1 \notin \mathfrak{p}_1$.
- (4) Let K be a field, and $R = K[X, XY, XY^2, ...] \subseteq S = K[X, Y]$. Show that the height of (X)R is two. Compare this to Krull's Height Theorem.
- (5) Let R be a Noetherian ring, I be an ideal, and $f \in R$. Must one have $\operatorname{height}(I + (f)) \leq \operatorname{height}(I) + 1$?
- (6) Let *R* be a Noetherian ring and $\mathfrak{p} \subseteq \mathfrak{q}$ be prime ideals. Show that if there exists some prime strictly between \mathfrak{p} and \mathfrak{q} , then there exist infinitely many primes between \mathfrak{p} and \mathfrak{q} .

¹This is known as the *n*th symbolic power of q.

²Use the fact that $f \notin \mathfrak{q}$ and $\mathfrak{q}^{(n)}$ is primary.