DEFINITION: A ring R is **Artinian** if every descending chain of ideals $I_1 \supseteq I_2 \supseteq I_3 \supseteq \cdots$ eventually stabilizes: i.e., there is some N such that $I_n = I_N$ for all $n \geq N$. A module is **Artinian** if every descending chain of submodules $N_1 \supseteq N_2 \supseteq N_3 \supseteq \cdots$ eventually stabilizes.

PROPOSITION: Let R be a ring and M be a module.

- (1) M is Artinian if and only if every nonempty family S of submodules of M has a minimal element.
- (2) If N is a submodule of M, then M is Artinian if and only if N and M/N are both Artinian.

THEOREM: Let R be a ring. The following are equivalent:

- (1) R is Noetherian of dimension zero,
- (2) R is a finite product of Noetherian local rings of dimension zero,
- (3) R is a finite length R -module,
- (4) R is Artinian.

(1) Jordan-Hölder review: Explain why a finite length module is Artinian.

Given such a chain, the length of each successive submodule is smaller, so any such chain can have length at most the length of M.

(2) Proof of the Theorem, the useful part: Prove¹ that (i) \Rightarrow (ii) \Rightarrow (iii) \Rightarrow (iv).

For (i) \Rightarrow (ii), if R is Noetherian of dimension zero, then $V(0)$ consists of maximal ideals by the dimension assumption, and is finite since every such ideal is minimal, and Noetherian rings have finitely many minimal primes. Then, by a homework problem, since $V(0)$ is a finite set of maximal ideals, $R = R/0 \cong R/Q_1 \times \cdots \times R/Q_t$ where each Q_t is primary to a maximal ideal, so each R/Q_i is local of dimension zero (and Noetherian, since it is a quotient of a Noetherian ring).

For (ii) \Rightarrow (iii), we have that R is a finitely generated R-module whose support is a finite set of maximal ideals, so R has finite length.

 $(iii) \Rightarrow (iv)$ follows from the previous problem.

(3) Vector spaces:

- (a) Let K be a field and V be a vector space. Show that V is finite-dimensional if and only if V is Noetherian if and only if V is Artinian.
- (b) Let (R, \mathfrak{m}, k) be a local ring, and M be an R-module such that $\mathfrak{m}M = 0$. Show that M has finite length if and only if M is Noetherian if and only if M is Artinian.

(a) Finite-dimensional is the same as finite length, and finite length implies Noetherian and Artinian in general. Conversely, in an infinite dimensional vector space, one can take a basis and construct infinite ascending or descending chains of subsets of the basis, and the spans form infinite ascending or descending chains of subspaces, so V is neither Artinian nor Noetherian.

(b) One can identify such a module with a k -module and apply part (1).

¹Hint: In the setting of (i), note that $V(0)$ is a finite set of maximal ideals, and use a homework problem.

- (4) Proof of the Theorem, the fun part: Suppose that R is Artinian.
	- (a) First, we show $\dim(R) = 0$: By way of contradiction, suppose there is nonmaximal prime p, so there is some nonzero nonunit $a \in R/\mathfrak{p}$. Consider the descending chain of ideals

$$
(a) \supseteq (a^2) \supseteq (a^3) \supseteq \cdots.
$$

to obtain a contradiction.

(b) Second, we show that $Max(R)$ is finite: By way of contradiction, if m_1, m_2, m_3, \ldots are distinct maximal ideals, consider the descending chain of ideals

$$
\mathfrak{m}_1\supseteq\mathfrak{m}_1\cap\mathfrak{m}_2\supseteq\mathfrak{m}_1\cap\mathfrak{m}_2\cap\mathfrak{m}_3\supseteq\cdots.
$$

- (c) Third, we show that R is a finite product of Artinian local rings of dimension zero: Apply a homework problem.
- (d) Fourth, we show that an Artinian local ring (R, \mathfrak{m}, k) has finite length: Consider the chain

$$
\mathfrak{m}\supseteq\mathfrak{m}^2\supseteq\mathfrak{m}^3\supseteq\cdots.
$$

What do we deduce? Why do we *not* immediate deduce that $\mathfrak{m}^n = 0$ for some *n* from NAK?

- (e) Fourth continued: If $\mathfrak{m}^n = \mathfrak{m}^{n+1}$ and $\mathfrak{m}^n \neq 0$, consider $\mathcal{S} = \{\text{ideals } J \mid J\mathfrak{m}^n \neq 0\}$. Explain why S has a minimal element I, and I is principal. Now deduce that $\mathfrak{m}^n = 0$.
- (f) Fourth continueder: Explain why m^i/m^{i+1} has finite length for each i. Deduce that R has finite length.
- (g) Complete the proof.
	- (a) Finite-dimensional is the same as finite length, and finite length implies Noetherian and Artinian in general. Conversely, in an infinite dimensional vector space, one can take a basis and construct infinite ascending or descending chains of subsets of the basis, and the spans form infinite ascending or descending chains of subspaces, so V is neither Artinian nor Noetherian.
	- **(b)** One can identify such a module with a k -module and apply part (1).

(5) Artinian Modules:

- (a) Let K be a field. Show that the $K[X]$ -module $K[X]_X/K[X]$ is Artinian but not finite length.
- (b) Show that an R -module M has finite length if and only if it is Artinian and Noetherian.
- (c) Let R be a Noetherian ring. Show that if M is an Artinian module, then $\text{Ass}_R(M) \subseteq \text{Max}(R)$.
- (d) Let R be a Noetherian N-graded ring with $R_0 = K$ a field. Show that if M is an Artinian \mathbb{Z} -graded module, then there is some *n* such that $M_{\geq n} = 0$.
- (e) Let R be a Noetherian ring. If M is an Artinian module, must $\operatorname{Ass}_R(M)$ be finite?