DEFINITION: A ring R is Artinian if every descending chain of ideals $I_1 \supseteq I_2 \supseteq I_3 \supseteq \cdots$ eventually stabilizes: i.e., there is some N such that $I_n = I_N$ for all $n \ge N$. A module is Artinian if every descending chain of submodules $N_1 \supseteq N_2 \supseteq N_3 \supseteq \cdots$ eventually stabilizes.

PROPOSITION: Let R be a ring and M be a module.

- (1) M is Artinian if and only if every nonempty family S of submodules of M has a minimal element.
- (2) If N is a submodule of M, then M is Artinian if and only if N and M/N are both Artinian.

THEOREM: Let R be a ring. The following are equivalent:

- (1) R is Noetherian of dimension zero,
- (2) R is a finite product of Noetherian local rings of dimension zero,
- (3) R is a finite length R-module,
- (4) R is Artinian.

(1) Jordan-Hölder review: Explain why a finite length module is Artinian.

(2) Proof of the Theorem, the useful part: Prove¹ that $(i) \Rightarrow (ii) \Rightarrow (iii) \Rightarrow (iv)$.

- (3) Vector spaces:
 - (a) Let K be a field and V be a vector space. Show that V is finite-dimensional if and only if V is Noetherian if and only if V is Artinian.
 - (b) Let (R, \mathfrak{m}, k) be a local ring, and M be an R-module such that $\mathfrak{m}M = 0$. Show that M has finite length if and only if M is Noetherian if and only if M is Artinian.
- (4) Proof of the Theorem, the fun part: Suppose that R is Artinian.
 - (a) First, we show $\dim(R) = 0$: By way of contradiction, suppose there is nonmaximal prime \mathfrak{p} , so there is some nonzero nonunit $a \in R/\mathfrak{p}$. Consider the descending chain of ideals

$$(a) \supseteq (a^2) \supseteq (a^3) \supseteq \cdots$$
.

to obtain a contradiction.

(b) Second, we show that Max(R) is finite: By way of contradiction, if $\mathfrak{m}_1, \mathfrak{m}_2, \mathfrak{m}_3, \ldots$ are distinct maximal ideals, consider the descending chain of ideals

 $\mathfrak{m}_1 \supseteq \mathfrak{m}_1 \cap \mathfrak{m}_2 \supseteq \mathfrak{m}_1 \cap \mathfrak{m}_2 \cap \mathfrak{m}_3 \supseteq \cdots$.

- (c) Third, we show that R is a finite product of Artinian local rings of dimension zero: Apply a homework problem.
- (d) Fourth, we show that an Artinian local ring (R, \mathfrak{m}, k) has finite length: Consider the chain

$$\mathfrak{m} \supseteq \mathfrak{m}^2 \supseteq \mathfrak{m}^3 \supseteq \cdots$$
.

What do we deduce? Why do we *not* immediate deduce that $\mathfrak{m}^n = 0$ for some *n* from NAK?

- (e) Fourth continued: If $\mathfrak{m}^n = \mathfrak{m}^{n+1}$ and $\mathfrak{m}^n \neq 0$, consider $S = \{\text{ideals } J \mid J\mathfrak{m}^n \neq 0\}$. Explain why S has a minimal element I, and I is principal. Now deduce that $\mathfrak{m}^n = 0$.
- (f) Fourth continueder: Explain why $\mathfrak{m}^i/\mathfrak{m}^{i+1}$ has finite length for each *i*. Deduce that *R* has finite length.
- (g) Complete the proof.

¹Hint: In the setting of (i), note that V(0) is a finite set of maximal ideals, and use a homework problem.

(5) Artinian Modules:

- (a) Let K be a field. Show that the K[X]-module $K[X]_X/K[X]$ is Artinian but not finite length.
- (b) Show that an R-module M has finite length if and only if it is Artinian and Noetherian.
- (c) Let R be a Noetherian ring. Show that if M is an Artinian module, then $Ass_R(M) \subseteq Max(R)$.
- (d) Let R be a Noetherian \mathbb{N} -graded ring with $R_0 = K$ a field. Show that if M is an Artinian \mathbb{Z} -graded module, then there is some n such that $M_{\geq n} = 0$.
- (e) Let R be a Noetherian ring. If M is an Artinian module, must $Ass_R(M)$ be finite?