
§8.34: SIMPLE MODULES AND LENGTH

DEFINITION: Let R be a ring and M a R-module.
(1) M is simple if it is nonzero and M has no nontrivial proper submodules.
(2) A composition series for M of length n is a chain of submodules

M = Mn % Mn−1 % · · · % M1 % M0 = 0

with Mi/Mi−1 simple for all i = 1, . . . , n. The
(3) M has finite length if it admits a composition series. The length of M , denoted `R(M) is

the minimal length n of a composition series for M .

JORDAN-HÖLDER THEOREM: Let R be a ring, and M a module of finite length. Let N ⊆ M be a
submodule.

(1) Any descending chain of submodules of M can be refined1 to a composition series for M .
(2) Every composition series for M has the same length.
(3) If N ⊆M is any submodule, then

(a) N and M/N have finite length, and `R(N), `R(M/N) ≤ `R(M),
(b) `R(N), `R(M/N) < `R(M) unless M = N or N = 0 respectively, and
(c) `R(N) + `R(M/N) = `R(M).

COROLLARY: If M has finite length, then M is Noetherian and any descending chain of submodules
of M stabilizes.

LEMMA: Let R be a ring. A module M is simple if and only if M ∼= R/m for some maximal
ideal m.

PROPOSITION: Let R be a Noetherian ring, and M be a module. The following are equivalent:
(1) M has finite length,
(2) M is finitely generated and SuppR(M) ⊆ Max(R),
(3) M is finitely generated and AssR(M) ⊆ Max(R).

(1)(1) Working with length: Let R = R[X, Y ].
(a)(a) Compute a composition series and find the R-module length of M = R/(X2 + 1, Y ).
(b)(b) Compute a composition series and find the R-module length of M = R/(X2 +X, Y ).
(c)(c) Compute a composition series and find the R-module length of M = (X, Y )/(X2, Y 2).

(a)(a) (X2+1, Y ) is a maximal ideal, so 0 ⊆M is a composition series and M has length one
(is simple).

(b)(b) We can take 0 ⊆ (X + 1, Y )/(X2 + X, Y ) ⊆ M . The quotients are isomorphic to
R/(X, Y ) and R/(X +1, Y ), respectively, so this is a composition series. The length is
two.

(c)(c) We can take 0 ⊆ (X2, XY, Y 2)/(X2, Y 2) ⊆ (X, Y 2)/(X2, Y 2) ⊆ M . Each quotient is
isomorphic to R/(X, Y ). The length is three.

(2)(2) Use the Jordan-Hölder Theorem to prove the Corollary.

1That is, terms can be inserted in between others in the chain to get a composition series.



Given an ascending chain, the lengths of the successive modules increase, so any such chain
can have length at most the length of M . Given such a chain, the length of each successive
submodule is smaller, so any such chain can have length at most the length of M .

(3)(3) Proof of Proposition: Let R be a Noetherian ring.
(a)(a) How do the concepts of “composition series” and “prime filtration” compare?
(b)(b) Why does having finite length imply that M is finitely generated2? What can one deduce

about the associated primes of M? Deduce (1)⇒(3).
(c)(c) Use the definition of support to explain why, if R/p is a factor in a prime filtration for M ,

then p ∈ SuppR(M). Deduce (2)⇒(1).
(d)(d) Show (3)⇒(2) to complete the proof.

(a)(a) A composition series is a special prime filtration.
(b)(b) From above, finite length implies Noetherian, and hence finite generation. By assump-

tion, M has a prime filtration with all maximal factors. Since the associated primes are
contained in the factors of a prime filtration, AssR(M) ⊆ Max(R).

(c)(c) Given a prime filtration for a module, if we localize at any prime factor p, then we get
a chain of submodules of Mp, and since (R/p)p 6= 0, some containment is proper in the
chain, so Mp 6= 0. Thus, if SuppR(M) ⊆ Max(R) and M is finitely generated, M has a
prime filtration, and any prime filtration for M has only maximal factors.

(d)(d) This follows since every prime in the support contains an associated prime.

(4) Show that if R is a finitely generated algebra of an algebraically closed field K, then the length
of an R-module M is equal to the dimension of M as a K-vector space.

(5) Proof of Jordan-Hölder: We will show (3a), (3b) directly, then deduce (1), (2), and (3c).
(a) Let’s start with deducing the other parts from (3a) and (3b). Show that (3a)+(3b)⇒(1) by

inducing on length.
(b) Show that (3a)⇒(2) by induction on length: given another composition series

M = Nm % Nm−1 % · · · % N1 % N0 = 0,

consider the case Nm−1 = Mn−1, and in the other case, consider K = Nm−1 ∩Mn−1.
(c) Show that (1)+(2)⇒(3c).
(d) Now we start on (3a) and (3b). Use the Second Isomorphism Theorem to show that

Mi ∩N

Mi−1 ∩N
∼=

Mi ∩N +Mi−1

Mi−1
.

(e) Show that N has a composition series of length at most n.
(f) Show that if the composition series you just found for N has length n, then N = M , so if

N $ M , then `R(N) < `R(M).
(g) Use the Second Isomorphism Theorem to show that

(Mi +N)/N

(Mi−1 +N)/N
∼=

Mi

Mi ∩ (Mi−1 ∩N)
.

(h) Show that M/N has a composition series of length at most n.

2The Corollary is fair game.



(i) Show that if the composition series you just found for M/N has length n, then N = 0, so if
N 6= 0, then `R(M/N) < `R(M). Deduce (3a) and (3b) to finish the proof.

(a) If M has length one, then M is simple, so any chain of submodules is already a compo-
sition series. In general, given a proper chain of submodules 0 = L0 $ · · · $ Lt = M ,
we have `(Li/Li−1) < `(M) by using (3a) and (3b). By induction on length, we can
find composition series for Li/Li−1. Then, by the lattice isomorphism theorem, we can
pull back to get chains of submodules from Li−1 to Li with simple quotients. This gives
the sought refinement.

(b) If M has length one, again this is trivial. Given another composition series given another
composition series

M = Nm % Nm−1 % · · · % N1 % N0 = 0,

first consider the case Nm−1 = Mn−1 =: K. Then `(K) < `(M), so by induction on
length, we can assume that any two composition series for K have the same length; in
particular, chain of Ni up to Nm−1 and the chain of Mi up to Mn−1 have the same length,
so m = n.
Now suppose that Nm−1 6= Mn−1, and set K := Nm−1 ∩Mn−1. By the second isomor-
phism theorem, we then have

M

Mn−1
=

Mn−1 +Nm−1

Mn−1
∼=

Nm−1

K

and similarly M/Nm−1 ∼= Mn−1/K, and both of these modules are simple. Given a
composition series for K of length t, one obtains a composition series for Mn−1 of length
t + 1 and a composition series for Nm−1 of length t + 1. Since `(Mn−1), `(Nm−1) <
`(M), by induction on length we can assume that n − 1 = t + 1 = m − 1 and we
conclude that m = n.

(c) Refine the chain 0 ⊆ N ⊆ M to a composition series of M . The portion from 0 up
to N is a composition series for N and the part from N to M yields, in the quotient,
a composition series of M/N . Since the lengths of any composition series of the same
module are the same, the result follows.

(d)
Mi ∩N

Mi−1 ∩N
=

Mi ∩N

(Mi ∩N) ∩Mi−1
∼=

Mi ∩N +Mi−1

Mi−1
.

(e) By the previous part, Mi∩N
Mi−1∩N is isomorphic to a submodule of Mi/Mi−1, so it is either

simple or zero. It follows that, after removing redundant terms,

0 = M0 ∩N ⊆M1 ∩N ⊆ · · · ⊆Mn ∩N = N

is a composition series for N .
(f) If no term is redundant in the chain above, then Mi∩N

Mi−1∩N
∼= Mi/Mi−1 for all i, and arguing

inductively on i, one has Mi = Mi ∩N for all i, so M = N .
(g)

(Mi +N)/N

(Mi−1 +N)/N
∼=

Mi +N

Mi−1 +N
∼=

Mi + (Mi−1 +N)

Mi−1 +N
∼=

Mi

Mi ∩ (Mi−1 +N)
.

(h) From the above, each module (Mi+N)/N
(Mi−1+N)/N

is isomorphic to a quotient of Mi/Mi−1, so is
either simple of zero. Thus, after removing redundant terms,

0 = (M0 +N)/N ⊆ (M1 +N)/N ⊆ · · · ⊆ (Mn +N)/N = M/N



is a composition series for M/N .
(i) If no term above is redundant, then Mi∩ (Mi−1+N) = Mi−1 for all i, so by descending

induction on i, N ⊆Mi−1 for each i, and N = 0.


