§8.34: SIMPLE MODULES AND LENGTH

DEFINITION: Let R be aring and M a R-module.

(1) M is simple if it is nonzero and M has no nontrivial proper submodules.
(2) A composition series for M of length n is a chain of submodules

M=M,2M, 122 M 2M=0
with M;/M;_, simple forall i = 1,...,n. The

(3) M has finite length if it admits a composition series. The length of )/, denoted (g(M ) is
the minimal length n of a composition series for M.

JORDAN-HOLDER THEOREM: Let R be a ring, and M a module of finite length. Let N C M be a
submodule.

(1) Any descending chain of submodules of M can be refined' to a composition series for M.
(2) Every composition series for M has the same length.
(3) If N C M is any submodule, then

(a) N and M/N have finite length, and (g(N), (gr(M/N) < {r(M),

(b) lr(N),lr(M/N) < {g(M) unless M = N or N = 0 respectively, and

(©) Lr(N) + Lr(M/N) = lr(M).

COROLLARY: If M has finite length, then M is Noetherian and any descending chain of submodules
of M stabilizes.

LEMMA: Let R be a ring. A module M is simple if and only if M = R/m for some maximal
ideal m.

PROPOSITION: Let 12 be a Noetherian ring, and M be a module. The following are equivalent:

(1) M has finite length,
(2) M is finitely generated and Suppy (M) C Max(R),
(3) M is finitely generated and Assg(M) C Max(R).

(1) Working with length: Let R = R[.X, Y.
(a) Compute a composition series and find the R-module length of M = R/(X? 4+ 1,Y).
(b) Compute a composition series and find the R-module length of M = R/(X?* + X,Y).
(c) Compute a composition series and find the R-module length of M = (X,Y")/(X?, Y?).

(@ (X?+1,Y)is a maximal ideal, so 0 C M is a composition series and M has length one
(is simple).

(b) We can take 0 C (X + 1,Y)/(X? + X,Y) C M. The quotients are isomorphic to
R/(X,Y)and R/(X 4 1,Y), respectively, so this is a composition series. The length is
two.

(c) We can take 0 C (X2 XY,Y?) /(X% Y?) C (X,Y?)/(X? Y?) C M. Each quotient is
isomorphic to R/(X,Y’). The length is three.

(2) Use the Jordan-Holder Theorem to prove the Corollary.

IThat is, terms can be inserted in between others in the chain to get a composition series.



Given an ascending chain, the lengths of the successive modules increase, so any such chain
can have length at most the length of M. Given such a chain, the length of each successive
submodule is smaller, so any such chain can have length at most the length of M.

(3) Proof of Proposition: Let R be a Noetherian ring.
(a) How do the concepts of “composition series” and “prime filtration” compare?
(b) Why does having finite length imply that M is finitely generated>? What can one deduce
about the associated primes of M ? Deduce (1)=-(3).
(c) Use the definition of support to explain why, if R/p is a factor in a prime filtration for M,
then p € Suppy(M). Deduce (2)=-(1).
(d) Show (3)=(2) to complete the proof.

(a) A composition series is a special prime filtration.

(b) From above, finite length implies Noetherian, and hence finite generation. By assump-
tion, M has a prime filtration with all maximal factors. Since the associated primes are
contained in the factors of a prime filtration, Assg(M) C Max(R).

(c) Given a prime filtration for a module, if we localize at any prime factor p, then we get
a chain of submodules of M,, and since (R/p), # 0, some containment is proper in the
chain, so M, # 0. Thus, if Supp(M) C Max(R) and M is finitely generated, M has a
prime filtration, and any prime filtration for M has only maximal factors.

(d) This follows since every prime in the support contains an associated prime.

(4) Show that if ? is a finitely generated algebra of an algebraically closed field K, then the length
of an R-module M is equal to the dimension of M as a K -vector space.

(5) Proof of Jordan-Holder: We will show (3a), (3b) directly, then deduce (1), (2), and (3c).
(a) Let’s start with deducing the other parts from (3a) and (3b). Show that (3a)+(3b)=-(1) by
inducing on length.
(b) Show that (3a)=-(2) by induction on length: given another composition series

M:ngNmflggngNOI()?

consider the case V,,_1 = M,,_1, and in the other case, consider X = N,,,_1 N M,,_1.
(c) Show that (1)+(2)=-(3c).
(d) Now we start on (3a) and (3b). Use the Second Isomorphism Theorem to show that

M;NnN _ M;ON+ M,
M, yNN M;_y '

(e) Show that N has a composition series of length at most n.
(f) Show that if the composition series you just found for N has length n, then N = M, so if

N ; M, then ER(N) < ER(M)
(g) Use the Second Isomorphism Theorem to show that

(M; + N)/N M;

(M;_y+N)/N  M;n(M;_;NN)’
(h) Show that M /N has a composition series of length at most n.

’The Corollary is fair game.



(i) Show that if the composition series you just found for M /N has length n, then N = 0, so if
N # 0, then lr(M/N) < {r(M). Deduce (3a) and (3b) to finish the proof.

(a) If M has length one, then M is simple, so any chain of submodules is already a compo-
sition series. In general, given a proper chain of submodules 0 = L ; e ; L, =M,
we have ((L;/L;_1) < ¢(M) by using (3a) and (3b). By induction on length, we can
find composition series for L;/L; 1. Then, by the lattice isomorphism theorem, we can
pull back to get chains of submodules from L;_; to L; with simple quotients. This gives
the sought refinement.

(b) If M has length one, again this is trivial. Given another composition series given another
composition series

M:ngNmflggngNO:()?

first consider the case N,,_; = M, =: K. Then ¢(K) < ¢(M), so by induction on
length, we can assume that any two composition series for K have the same length; in
particular, chain of V; up to N,,,_; and the chain of M; up to M,,_; have the same length,
som = n.

Now suppose that N,,, | # M,,_1, and set K := N,,,_1 N M,,_;. By the second isomor-
phism theorem, we then have

M o Mn—l +Nm—1 ~ Nm—l
Mn—l B Mn—l B K

and similarly M/N,, 1 = M,_;/K, and both of these modules are simple. Given a
composition series for K of length ¢, one obtains a composition series for M,, | of length
t + 1 and a composition series for V,, ; of length ¢ + 1. Since ¢(M,,_1),{(N,,—1) <
¢(M), by induction on length we can assume that n — 1 = ¢t + 1 = m — 1 and we
conclude that m = n.

(c) Refine the chain 0 € N C M to a composition series of M. The portion from 0 up
to IV is a composition series for /V and the part from N to M yields, in the quotient,
a composition series of M /N. Since the lengths of any composition series of the same
module are the same, the result follows.

(d)
M;NN M;NN ~ MiN N+ M,; 4
M; NN  (MinN)NM,;_;, M; ‘
(e) By the previous part, MMjéVN is isomorphic to a submodule of M;/M;_1, so it is either

simple or zero. It follows that, after removing redundant terms,
O=MyNnNCMiNNC---CM,NN=N
is a composition series for V.
(f) If no term is redundant in the chain above, then % = M;/M;_, forall i, and arguing
inductively on ¢, one has M; = M; N N forall 7, so M = N.
(8)
(M;+N)/N _, Mi+N _ Mj+(M;_y +N) M,
(M;~y+N)/N  M;++N M1 +N M;N (M;_1+ N)

(h) From the above, each module % is isomorphic to a quotient of M; /M, 1, so is

either simple of zero. Thus, after removing redundant terms,
0=(My+N)/N(My+N)/NC---C(M,+N)/N=M/N

12




is a composition series for M /N.
(i) If no term above is redundant, then M; N (M;_1 + N) = M;_; for all 7, so by descending
induction on ¢, N C M,;_; for each 7, and N = 0.




