
§7.33: TRANSCENDENCE DEGREE AND DIMENSION

DEFINITION: Let K ⊆ L be an extension of fields and let S be a subset of L.
(1) The subfield of L generated by K and S, denoted K(S), is the smallest

subfield of L containing K and S. Equivalently, K(S) is the set of elements
in L that can be written as rational function expressions in S with coefficients
in K.

(2) We say that S is algebraically independent over K if there are nonzero poly-
nomial relations on any finite subset of S. Equivalently, S is algebraically in-
dependent over K if, for a set of indeterminates X = {Xs | s ∈ S}, there is an
isomorphism of field extensions of K between the field of rational functions
K(S) and K(X) via s 7→ Xs.

(3) We say that S is a transcendence basis for L over K if S is algebraically
independent over K and the field extension K(S) ⊆ L is algebraic.

LEMMA: Let K ⊆ L be an extension of fields.
(1) Every K-algebraically independent subset of L is contained in a transcen-

dence basis. In particular, there exists a transcendence basis for L over K.
(2) Every transcendence basis for L over K has the same cardinality.

DEFINITION: Let K ⊆ L be an extension of fields. The transcendence degree of L
over K is the cardinality of a transcendence basis for L over K.

THEOREM: Let K be a field, and R be a domain that is algebra-finite over K. Then,
the dimension of R is equal to the transcendence degree of Frac(R) over K.

(1)(1) Let K be a field, and R be a domain that is algebra-finite over K.
(a)(a) Explain why, if R = K[f1, . . . , fm], then Frac(R) = K(f1, . . . , fm).
(b)(b) Show1 that if A = K[z1, . . . , zt] is a Noether normalization for R, then
{z1, . . . , zt} forms a transcendence basis for Frac(R).

(c)(c) Deduce the Theorem.

(a)(a) Since f1, . . . , fm ∈ Frac(R), the containment Frac(R) ⊇ K(f1, . . . , fm)
holds. Conversely, every element of Frac(R) can be written as a fraction
of elements of R, and an element of R can be written as a polynomial
expression in fi, so each element of Frac(R) is a rational expression in
the fi’s.

(b)(b) By definition, the zi are algebraically independent. Write R =
∑

Ari.
We claim that Frac(R) =

∑
Frac(A)ri. Indeed, given r/s for r, s ∈ R,

we can write st = a for some a ∈ A nonzero and t ∈ R. Then for

1Hint: Recall that every nonzero r ∈ R has a nonzero multiple in A.



some si ∈ R, we have r/s = rt/a = (
∑

risi)/a =
∑

(si/a)ri, so
r/s ∈

∑
Frac(A)ri.

(c)(c) Follows from the Theorem that in this setting the dimension equals the
cardinality of the variables in a Noether normalization, and that the tran-
scendence degree of the fraction field of a NN is the number of elements
in the NN.

(2)(2) Let K be a field. Use the Theorem to compute the dimension of

R = K[UX,UY, UZ, V X, V Y, V Z] ⊆ K[U, V,X, Y, Z].

We have Frac(R) = K(UX,UY, UZ, V X, V Y, V Z) =
K(UX, Y/X,Z/X, V/U), which has transcendence degree four.

(3)(3) Let R ⊆ S be domains.
(a)(a) Use the Theorem to prove that if R ⊆ S are finitely generated algebras over

some field K, then dim(R) ≤ dim(S).
(b)(b) Give an example where dim(R) > dim(S).

(a)(a) This follows from the transcendence degree characterization, since a
maximal algebraically independent subset of Frac(R) is contained in a
maximal algebraically independent subset of Frac(S).

(b)(b) Z ⊆ Q.



(4) Proof of Lemma: Let K ⊆ L be fields, and S a subset of L.
(a) Show that S is a transcendence basis for L over K if and only if it is a

maximal K-algebraically independent subset of L.
(b) Deduce part (1) of the Lemma.
(c) Show that, to prove part (2) (in the case of two finite transcendence bases), it

suffices to show the following
EXCHANGE LEMMA: If {x1, . . . , xm} and {y1, . . . , yn} are two transcen-
dence bases, then there is some j such that
{xj, y2, . . . , yn} is a transcendence basis.

(d) In the setting of the Exchange Lemma, explain why for each j, there is some
nonzero pj(t) ∈ K[y1, . . . , yn][t] such that pj(xj) = 0.

(e) In the setting of the previous part, explain why there is some j such that
pj(t) /∈ K[y2, . . . , yn][t].

(f) Show that the conclusion of the Exchange Lemma holds for j as in the pre-
vious part.

(a) If {lλ} and l ∈ L, then l is algebraic over K({lλ}), so there is a nonzero
polynomial relation ln + r1l

n−1 + · · · + rn = 0 with ri ∈ K({lλ}).
Writing ri =

pi
qi

and multiplying by the product of the qi’s gives a nonzero
polynomial relation on the lλ’s and l. Thus, {lλ} is a maximal algebraic
subset. The converse is similar.

(b) Given a nested union of algebraically independent subsets, the union is as
well, since a relation on one of these sets involves finitely many elements,
all of which must occur in one of the sets in the chain. The claim then
follows from Zorn’s Lemma.

(c) If {x1, . . . , xm} and {y1, . . . , yn} are two transcendence bases, say that
m ≤ n. If the intersection has s < m elements, then without loss of
generality y1 /∈ {x1, . . . , xm}. Then, for some i, {xi, y2 . . . , yn} is a
transcendence basis, and {x1, . . . , xm} ∩ {xi, y2 . . . , yn} has s + 1 ele-
ments. Replacing {y1, . . . , yn} with {xi, y2 . . . , yn} and repeating this
process, we obtain a transcendence basis with n elements such that
{x1, . . . , xm} ⊆ {y1, . . . , yn}. But we must then have that these two
transcendence bases are equal, so m = n.

(d) Since L is algebraic over K(y1, . . . , yn), for each i there is some pi(t) ∈
K(y1, . . . , yn)[t] such that pi(xi) = 0. We can clear denominators to
assume without loss of generality that pi(xi) ∈ K[y1, . . . , yn][t].

(e) If not, so pi(t) ∈ K[y2, . . . , yn][t] for all i, note that each xi is al-
gebraic over K(y2, . . . , yn). Thus, K(x1, . . . , xm) is algebraic over
K(y2, . . . , yn), and since L is algebraic over K(x1, . . . , xm), y is alge-
braic over K(y2, . . . , yn), which contradicts that {y1, . . . , yn} is a tran-
scendence basis. This shows the claim.



(f) Thinking of the equation pi(xi) = 0 as a polynomial expression
in K[xi, y2, . . . , yn][y1], y1 is algebraic over K(xi, y2, . . . , yn), hence
K(y1, . . . , yn) is algebraic over K(xi, y2, . . . , yn), and L as well.
If {xi, y2, . . . , yn}were algebraically dependent, take a polynomial equa-
tion p(xi, y2, . . . , yn) = 0. Note that this equation must involve xi,
since y2, . . . , yn are algebraically independent. We would then have
K(xi, y2, . . . , yn) is algebraic over K(y2, . . . , yn). But since y1 is al-
gebraic over K(xi, y2, . . . , yn), we would have that K(y1, . . . , yn) is al-
gebraic over K(y2, . . . , yn), which would contradict that y1, . . . , yn is a
transcendence basis.


