DEFINITION: Let $K \subseteq L$ be an extension of fields and let S be a subset of L.

- (1) The subfield of L generated by K and S, denoted $K(S)$, is the smallest subfield of L containing K and S. Equivalently, $K(S)$ is the set of elements in L that can be written as rational function expressions in S with coefficients in K .
- (2) We say that S is **algebraically independent** over K if there are nonzero polynomial relations on any finite subset of S. Equivalently, S is algebraically independent over K if, for a set of indeterminates $X = \{X_s | s \in S\}$, there is an isomorphism of field extensions of K between the field of rational functions $K(S)$ and $K(X)$ via $s \mapsto X_s$.
- (3) We say that S is a **transcendence basis** for L over K if S is algebraically independent over K and the field extension $K(S) \subseteq L$ is algebraic.

LEMMA: Let $K \subseteq L$ be an extension of fields.

- (1) Every K -algebraically independent subset of L is contained in a transcendence basis. In particular, there exists a transcendence basis for L over K.
- (2) Every transcendence basis for L over K has the same cardinality.

DEFINITION: Let $K \subseteq L$ be an extension of fields. The **transcendence degree** of L over K is the cardinality of a transcendence basis for L over K .

THEOREM: Let K be a field, and R be a domain that is algebra-finite over K. Then, the dimension of R is equal to the transcendence degree of $Frac(R)$ over K.

- (1) Let K be a field, and R be a domain that is algebra-finite over K .
	- (a) Explain why, if $R = K[f_1, \ldots, f_m]$, then $Frac(R) = K(f_1, \ldots, f_m)$.
	- **(b)** Show¹ that if $A = K[z_1, \ldots, z_t]$ is a Noether normalization for R, then $\{z_1, \ldots, z_t\}$ forms a transcendence basis for $\text{Frac}(R)$.
	- (c) Deduce the Theorem.
		- (a) Since $f_1, \ldots, f_m \in \text{Frac}(R)$, the containment $\text{Frac}(R) \supseteq K(f_1, \ldots, f_m)$ holds. Conversely, every element of $Frac(R)$ can be written as a fraction of elements of R , and an element of R can be written as a polynomial expression in f_i , so each element of $Frac(R)$ is a rational expression in the f_i 's.
		- **(b)** By definition, the z_i are algebraically independent. Write $R = \sum A r_i$. We claim that $\text{Frac}(R) = \sum \text{Frac}(A) r_i$. Indeed, given r/s for $r, s \in R$, we can write $st = a$ for some $a \in A$ nonzero and $t \in R$. Then for

¹Hint: Recall that every nonzero $r \in R$ has a nonzero multiple in A.

some $s_i \in R$, we have $r/s = rt/a = (\sum r_i s_i)/a = \sum (s_i/a)r_i$, so $r/s \in \sum \operatorname{Frac}(A)r_i.$

(c) Follows from the Theorem that in this setting the dimension equals the cardinality of the variables in a Noether normalization, and that the transcendence degree of the fraction field of a NN is the number of elements in the NN.

(2) Let K be a field. Use the Theorem to compute the dimension of

 $R = K[UX,UY, UZ, VX, VY, VZ] \subseteq K[U, V, X, Y, Z].$

We have $Frac(R) = K(UX, UY, UZ, VX, VY, VZ) =$ $K(UX, Y/X, Z/X, V/U)$, which has transcendence degree four.

- (3) Let $R \subseteq S$ be domains.
	- (a) Use the Theorem to prove that if $R \subseteq S$ are finitely generated algebras over some field K, then $\dim(R) \leq \dim(S)$.
	- **(b)** Give an example where $\dim(R) > \dim(S)$.

(a) This follows from the transcendence degree characterization, since a maximal algebraically independent subset of $Frac(R)$ is contained in a maximal algebraically independent subset of $Frac(S)$.

(b)
$$
\mathbb{Z} \subseteq \mathbb{Q}
$$
.

- (4) Proof of Lemma: Let $K \subseteq L$ be fields, and S a subset of L.
	- (a) Show that S is a transcendence basis for L over K if and only if it is a maximal K-algebraically independent subset of L.
	- (b) Deduce part (1) of the Lemma.
	- (c) Show that, to prove part (2) (in the case of two finite transcendence bases), it suffices to show the following EXCHANGE LEMMA: If $\{x_1, \ldots, x_m\}$ and $\{y_1, \ldots, y_n\}$ are two transcendence bases, then there is some j such that ${x_j, y_2, \ldots, y_n}$ is a transcendence basis.
	- (d) In the setting of the Exchange Lemma, explain why for each j , there is some nonzero $p_i(t) \in K[y_1, \ldots, y_n][t]$ such that $p_i(x_i) = 0$.
	- (e) In the setting of the previous part, explain why there is some j such that $p_i(t) \notin K[y_2, \ldots, y_n][t].$
	- (f) Show that the conclusion of the Exchange Lemma holds for j as in the previous part.
		- (a) If $\{l_{\lambda}\}\$ and $l \in L$, then l is algebraic over $K(\{l_{\lambda}\})$, so there is a nonzero polynomial relation $l^n + r_1 l^{n-1} + \cdots + r_n = 0$ with $r_i \in K({l_{\lambda}})$. Writing $r_i = \frac{p_i}{q_i}$ $\frac{p_i}{q_i}$ and multiplying by the product of the q_i 's gives a nonzero polynomial relation on the l_{λ} 's and l. Thus, $\{l_{\lambda}\}\$ is a maximal algebraic subset. The converse is similar.
		- (b) Given a nested union of algebraically independent subsets, the union is as well, since a relation on one of these sets involves finitely many elements, all of which must occur in one of the sets in the chain. The claim then follows from Zorn's Lemma.
		- (c) If $\{x_1, \ldots, x_m\}$ and $\{y_1, \ldots, y_n\}$ are two transcendence bases, say that $m \leq n$. If the intersection has $s < m$ elements, then without loss of generality $y_1 \notin \{x_1, \ldots, x_m\}$. Then, for some $i, \{x_i, y_2, \ldots, y_n\}$ is a transcendence basis, and $\{x_1, \ldots, x_m\} \cap \{x_i, y_2 \ldots, y_n\}$ has $s + 1$ elements. Replacing $\{y_1, \ldots, y_n\}$ with $\{x_i, y_2, \ldots, y_n\}$ and repeating this process, we obtain a transcendence basis with n elements such that ${x_1, \ldots, x_m} \subseteq {y_1, \ldots, y_n}$. But we must then have that these two transcendence bases are equal, so $m = n$.
		- (d) Since L is algebraic over $K(y_1, \ldots, y_n)$, for each i there is some $p_i(t) \in$ $K(y_1, \ldots, y_n)[t]$ such that $p_i(x_i) = 0$. We can clear denominators to assume without loss of generality that $p_i(x_i) \in K[y_1, \ldots, y_n][t]$.
		- (e) If not, so $p_i(t) \in K[y_2, \ldots, y_n][t]$ for all i, note that each x_i is algebraic over $K(y_2, \ldots, y_n)$. Thus, $K(x_1, \ldots, x_m)$ is algebraic over $K(y_2, \ldots, y_n)$, and since L is algebraic over $K(x_1, \ldots, x_m)$, y is algebraic over $K(y_2, \ldots, y_n)$, which contradicts that $\{y_1, \ldots, y_n\}$ is a transcendence basis. This shows the claim.

(f) Thinking of the equation $p_i(x_i) = 0$ as a polynomial expression in $K[x_i, y_2, \ldots, y_n][y_1]$, y_1 is algebraic over $K(x_i, y_2, \ldots, y_n)$, hence $K(y_1, \ldots, y_n)$ is algebraic over $K(x_i, y_2, \ldots, y_n)$, and L as well. If $\{x_i, y_2, \ldots, y_n\}$ were algebraically dependent, take a polynomial equation $p(x_i, y_2, \ldots, y_n) = 0$. Note that this equation must involve x_i , since y_2, \ldots, y_n are algebraically independent. We would then have $K(x_i, y_2, \ldots, y_n)$ is algebraic over $K(y_2, \ldots, y_n)$. But since y_1 is algebraic over $K(x_i, y_2, \ldots, y_n)$, we would have that $K(y_1, \ldots, y_n)$ is algebraic over $K(y_2, \ldots, y_n)$, which would contradict that y_1, \ldots, y_n is a transcendence basis.