DEFINITION: Let $K \subseteq L$ be an extension of fields and let S be a subset of L.

- (1) The subfield of L generated by K and S, denoted K(S), is the smallest subfield of L containing K and S. Equivalently, K(S) is the set of elements in L that can be written as rational function expressions in S with coefficients in K.
- (2) We say that S is **algebraically independent** over K if there are nonzero polynomial relations on any finite subset of S. Equivalently, S is algebraically independent over K if, for a set of indeterminates $X = \{X_s \mid s \in S\}$, there is an isomorphism of field extensions of K between the field of rational functions K(S) and K(X) via $s \mapsto X_s$.
- (3) We say that S is a **transcendence basis** for L over K if S is algebraically independent over K and the field extension $K(S) \subseteq L$ is algebraic.

LEMMA: Let $K \subseteq L$ be an extension of fields.

- (1) Every K-algebraically independent subset of L is contained in a transcendence basis. In particular, there exists a transcendence basis for L over K.
- (2) Every transcendence basis for L over K has the same cardinality.

DEFINITION: Let $K \subseteq L$ be an extension of fields. The **transcendence degree** of L over K is the cardinality of a transcendence basis for L over K.

THEOREM: Let K be a field, and R be a domain that is algebra-finite over K. Then, the dimension of R is equal to the transcendence degree of Frac(R) over K.

- (1) Let K be a field, and R be a domain that is algebra-finite over K.
 - (a) Explain why, if $R = K[f_1, \ldots, f_m]$, then $Frac(R) = K(f_1, \ldots, f_m)$.
 - (b) Show¹ that if $A = K[z_1, ..., z_t]$ is a Noether normalization for R, then $\{z_1, ..., z_t\}$ forms a transcendence basis for Frac(R).
 - (c) Deduce the Theorem.
 - (a) Since f₁,..., f_m ∈ Frac(R), the containment Frac(R) ⊇ K(f₁,..., f_m) holds. Conversely, every element of Frac(R) can be written as a fraction of elements of R, and an element of R can be written as a polynomial expression in f_i, so each element of Frac(R) is a rational expression in the f_i's.
 - (b) By definition, the z_i are algebraically independent. Write $R = \sum Ar_i$. We claim that $\operatorname{Frac}(R) = \sum \operatorname{Frac}(A)r_i$. Indeed, given r/s for $r, s \in R$, we can write st = a for some $a \in A$ nonzero and $t \in R$. Then for

¹Hint: Recall that every nonzero $r \in R$ has a nonzero multiple in A.

some $s_i \in R$, we have $r/s = rt/a = (\sum r_i s_i)/a = \sum (s_i/a)r_i$, so $r/s \in \sum \operatorname{Frac}(A)r_i$.

(c) Follows from the Theorem that in this setting the dimension equals the cardinality of the variables in a Noether normalization, and that the transcendence degree of the fraction field of a NN is the number of elements in the NN.

(2) Let K be a field. Use the Theorem to compute the dimension of

 $R = K[UX, UY, UZ, VX, VY, VZ] \subseteq K[U, V, X, Y, Z].$

We have $\operatorname{Frac}(R) = K(UX, UY, UZ, VX, VY, VZ) = K(UX, Y/X, Z/X, V/U)$, which has transcendence degree four.

(3) Let $R \subseteq S$ be domains.

- (a) Use the Theorem to prove that if R ⊆ S are finitely generated algebras over some field K, then dim(R) ≤ dim(S).
- (b) Give an example where $\dim(R) > \dim(S)$.

(a) This follows from the transcendence degree characterization, since a maximal algebraically independent subset of Frac(R) is contained in a maximal algebraically independent subset of Frac(S).

(b) $\mathbb{Z} \subseteq \mathbb{Q}$.

- (4) Proof of Lemma: Let $K \subseteq L$ be fields, and S a subset of L.
 - (a) Show that S is a transcendence basis for L over K if and only if it is a maximal K-algebraically independent subset of L.
 - (b) Deduce part (1) of the Lemma.
 - (c) Show that, to prove part (2) (in the case of two finite transcendence bases), it suffices to show the following EXCHANGE LEMMA: If {x₁,...,x_m} and {y₁,...,y_n} are two transcendence bases, then there is some j such that {x_i, y₂,...,y_n} is a transcendence basis.
 - (d) In the setting of the Exchange Lemma, explain why for each j, there is some nonzero $p_i(t) \in K[y_1, \ldots, y_n][t]$ such that $p_i(x_i) = 0$.
 - (e) In the setting of the previous part, explain why there is some j such that p_j(t) ∉ K[y₂,...,y_n][t].
 - (f) Show that the conclusion of the Exchange Lemma holds for j as in the previous part.
 - (a) If $\{l_{\lambda}\}$ and $l \in L$, then l is algebraic over $K(\{l_{\lambda}\})$, so there is a nonzero polynomial relation $l^n + r_1 l^{n-1} + \cdots + r_n = 0$ with $r_i \in K(\{l_{\lambda}\})$. Writing $r_i = \frac{p_i}{q_i}$ and multiplying by the product of the q_i 's gives a nonzero polynomial relation on the l_{λ} 's and l. Thus, $\{l_{\lambda}\}$ is a maximal algebraic subset. The converse is similar.
 - (b) Given a nested union of algebraically independent subsets, the union is as well, since a relation on one of these sets involves finitely many elements, all of which must occur in one of the sets in the chain. The claim then follows from Zorn's Lemma.
 - (c) If $\{x_1, \ldots, x_m\}$ and $\{y_1, \ldots, y_n\}$ are two transcendence bases, say that $m \leq n$. If the intersection has s < m elements, then without loss of generality $y_1 \notin \{x_1, \ldots, x_m\}$. Then, for some $i, \{x_i, y_2, \ldots, y_n\}$ is a transcendence basis, and $\{x_1, \ldots, x_m\} \cap \{x_i, y_2, \ldots, y_n\}$ has s + 1 elements. Replacing $\{y_1, \ldots, y_n\}$ with $\{x_i, y_2, \ldots, y_n\}$ and repeating this process, we obtain a transcendence basis with n elements such that $\{x_1, \ldots, x_m\} \subseteq \{y_1, \ldots, y_n\}$. But we must then have that these two transcendence bases are equal, so m = n.
 - (d) Since L is algebraic over $K(y_1, \ldots, y_n)$, for each *i* there is some $p_i(t) \in K(y_1, \ldots, y_n)[t]$ such that $p_i(x_i) = 0$. We can clear denominators to assume without loss of generality that $p_i(x_i) \in K[y_1, \ldots, y_n][t]$.
 - (e) If not, so $p_i(t) \in K[y_2, \ldots, y_n][t]$ for all *i*, note that each x_i is algebraic over $K(y_2, \ldots, y_n)$. Thus, $K(x_1, \ldots, x_m)$ is algebraic over $K(y_2, \ldots, y_n)$, and since *L* is algebraic over $K(x_1, \ldots, x_m)$, *y* is algebraic over $K(y_2, \ldots, y_n)$, which contradicts that $\{y_1, \ldots, y_n\}$ is a transcendence basis. This shows the claim.

(f) Thinking of the equation p_i(x_i) = 0 as a polynomial expression in K[x_i, y₂,..., y_n][y₁], y₁ is algebraic over K(x_i, y₂,..., y_n), hence K(y₁,..., y_n) is algebraic over K(x_i, y₂,..., y_n), and L as well. If {x_i, y₂,..., y_n} were algebraically dependent, take a polynomial equation p(x_i, y₂,..., y_n) = 0. Note that this equation must involve x_i, since y₂,..., y_n are algebraically independent. We would then have K(x_i, y₂,..., y_n) is algebraic over K(y₂,..., y_n). But since y₁ is algebraic over K(x_i, y₂,..., y_n), we would have that K(y₁,..., y_n) is algebraic over K(y₂,..., y_n) is algebraic over K(y₁,..., y_n) is algebraic over K(y₁,..., y_n) is algebraic over K(y₁,..., y_n) is algebraic over K(y₂,..., y_n), which would contradict that y₁,..., y_n is a transcendence basis.