THEOREM: Let K be a field, and R be a domain that is algebra-finite over K. Let $K[f_1, \ldots, f_n]$ be a Noether normalization of R. Any saturated chain of primes from 0 to a maximal ideal m of R has length n.

COROLLARY: Let K be a field, and R be a finitely generated K-algebra. Then

- (1) For any primes $\mathfrak{p} \subseteq \mathfrak{q}$ of R, every saturated chain of primes from \mathfrak{p} to \mathfrak{q} has the same length. (That is, R is **catenary**).
- (2) If R is a domain, and I is an arbitrary ideal, then $\dim(R) = \dim(R/I) + \operatorname{height}(I)$.
- (1) Consequences of the Theorem: Let K be a field.
 - (a) Use the Theorem to deduce that $\dim(K[X_1, \ldots, X_n]) = n$.
 - **(b)** Use the Theorem to deduce that every Noether normalization has the same number of elements.
 - (c) Use part (a) above to show that the dimension of a K-algebra is at most the number of generators in an K-algebra generating set.
 - (d) Use the Theorem to prove part (1) of the Corollary.
- (2) Let K be a field. Use the Theorem and previous computations to compute the dimension of each of the following rings:

(a)
$$\frac{K[X,Y,Z]}{(X^3 + Y^3 + Z^3)}$$
.
(b) $\frac{K[X,Y]}{(XY)}$.
(c) $K[X^4, X^3Y, XY^3, Y^4]$.

- (3) Proof of Theorem: Induce on the number of elements n in a Noether normalization.
 - (a) Explain the case n = 0.
 - (b) For the general case, let $A = K[z_1, \ldots, z_n] \subseteq R$ be a Noether normalization, and take a saturated chain of primes of R:

$$(0) = \mathfrak{p}_0 \subsetneqq \mathfrak{p}_1 \subsetneqq \cdots \subsetneqq \mathfrak{p}_s = \mathfrak{m}.$$

Explain why p_1 has height 1.

- (c) Explain why $\mathfrak{p}_1 \cap A$ has height 1.
- (d) Explain why $\mathfrak{p}_1 \cap A$ is principal.
- (e) Explain why, after a change of coordinates, we can assume that $K[z_1, \ldots, z_{n-1}]$ is a Noether normalization of R/\mathfrak{p}_1 .
- (f) Finish the proof.
- (4) Use the Theorem to prove part (2) of the Corollary.
- (5) Let $R = K[X_1, \ldots, X_n]$ and f_{m+1}, \ldots, f_n be polynomials such that $f_{m+1} \in K[X_1, \ldots, X_{m+1}]$ is monic in $X_{m+1}, \ldots, f_n \in K[X_1, \ldots, X_n]$ is monic in X_n . Show that $K[x_1, \ldots, x_m]$ is a Noether normalization for $S = R/(f_{m+1}, \ldots, f_n)$, and deduce that $\dim(S) = m$, and that height $(f_{m+1}, \ldots, f_n) = n - m$.

- (6) Let K be a field, and let $R \subseteq S$ be an inclusion of finitely generated K-algebras that are both domains. Show that for any $q \in \text{Spec}(S)$, $\text{height}(q) = \text{height}(q \cap R)$.
- (7) Let K be a field. Show that $K[[X_1, \ldots, X_n]]$ is a domain of dimension n.