
§7.31: COHEN-SEIDENBERG THEOREMS: PROOFS

LYING OVER: Let R ⊆ S be an integral inclusion. Then the induced map Spec(S)→ Spec(R) is
surjective. That is, for any prime p ∈ Spec(R), there is a prime q ∈ Spec(S) such that q ∩ R = p;
i.e., a prime lying over p.

INCOMPARABILITY: Let R → S be integral (but not necessarily injective). Then for any
q1, q2 ∈ Spec(S) such that q1 ∩ R = q2 ∩ R, we have q1 6* q2. That is, any two primes lying
over the same prime are incomparable.

GOING UP: Let R → S be integral (but not necessarily injective). Then for any p $ P in Spec(R)
and q ∈ Spec(S) such that q∩R = p, there is some Q ∈ Spec(S) such that q ⊆ Q and Q∩R = P.

GOING DOWN: Let R ⊆ S be an integral inclusion of domains, and assume that R is normal. Then
for any p $ P in Spec(R) and Q ∈ Spec(S) such that Q ∩R = P, there is some q ∈ Spec(S) such
that q ⊆ Q and q ∩R = p.

LEMMA: Let R ⊆ S be an integral inclusion and I an ideal of R. Then any element of s ∈ IS
satisfies a monic equation over R of the form1

sn + a1s
n−1 + · · ·+ an = 0 with ai ∈ I for all i.

(1)(1) Proof of Lying Over from the Lemma: Let R ⊆ S be an integral inclusion.
(a)(a) Use the Lemma to show that if p is prime, then pS ∩R = p.
(b)(b) Show that (Rr p)−1(S/pS) is not the zero “ring”.
(c)(c) Deduce2 the Theorem.

(a)(a) Let r ∈ pS∩R. By the Lemma, we have an equation of the form rn+a1r
n−1+· · ·+an =

0 with ai ∈ p, so rn ∈ p, and hence r ∈ p.
(b)(b) Since pS ∩R = p, we have pS ∩ (Rr p) = ∅ so this is a legitimate ring.
(c)(c) We have Spec((R r p)−1(S/pS)) ↔ {q ∈ Spec(S) | q ⊇ pS and q ∩ R ⊆ p}. The

condition on the RHS is equivalent to q∩R = p. We have that Spec((Rrp)−1(S/pS)) 6=
∅, so some prime contracts to p.

(2)(2) Proof of Lemma: Let R ⊆ S be an integral inclusion and I an ideal of R.
(a)(a) Show that if s ∈ IS, then there is a module-finite R-subalgebra of S, say T , such that

s ∈ IT , so we can assume that S is module-finite.
(b)(b) Write S =

∑
iRsi and v = [s1, . . . , st]. Show that there is some t× t matrix A with entries

in I such that rv = vA.
(c)(c) Apply a TRICK and conclude the proof.

(a)(a) If s =
∑

aibi with ai ∈ I and bi ∈ S, take T = R[b1, . . . , bt].
(b)(b) We can write rsi =

∑
j aijsj with aij ∈ I . This gives the matrix equation we seek.

(c)(c) By the eigenvector trick, we have det(A− r1)v = 0. In particular, det(A− r1)S = 0,
so det(A − r1) = 0. Thinking of this as the evaluation of the polynomial expression

1In fact, one can take ai ∈ Ii for each i by the same proof, which is often useful.
2The old bijection Spec(W−1(T/J))←→ {q ∈ Spec(T ) | q ∩W = ∅ and J ⊆ q} may come in handy.



det(A − X1), this is monic in X and going modulo I this becomes ±Xn, so all the
lower terms are in I . Thus, it is the polynomial that we seek.

(3)(3) Proof of Incomparability: Let R→ S be integral.
(a)(a) Explain3 why the Theorem is true when R is a field.
(b)(b) Let p in Spec(R). Use the definition to explain why the map R/p → S/pS is integral, and

why the map (Rr p)−1(R/p)→ (Rr p)−1(S/pS) is integral.
(c)(c) Use the previous parts (plus an old bijection) to prove the Theorem.

(a)(a) If K is a field then any prime of S contracts to 0. But given any prime q of S, S/q is a
domain and K ⊆ S/q is integral, so S/q is a field. Thus every prime in S is maximal,
and we are done.

(b)(b) For any element of S/pS, an integral equation over R for a representative is an inte-
gral equation over R/p. Given s/w, one can take an integral equation for s and divide
through by a suitable power of w to get an integral equation.

(c)(c) The primes that contract to p are in bijection with primes of (Rr p)−1(S/pS). But this
is integral over the field (Rrp)−1(R/p), where the primes are incomparable by part (a).

(4) Proof of Going Up: Show that R/p→ S/q is an integral inclusion, apply Lying Over, and deduce
the Theorem.

This is an inclusion since the kernel of R → S/q is q ∩ R = p; it is integral, as an equation
for a representative holds for an element of S/q. By Lying over, there is a prime of S/q that
contracts to P/p. We can write this prime as Q/q for some Q ⊇ q. Then Q ∩ R, which one
checks directly is P.

(5) Proof of Going Down.
(a) Explain why it suffices to show that (S rQ)(Rr p) ∩ pS is empty.
(b) Let x be an element of the intersection. Show that4 the minimal monic polynomial f(x) of

x over Frac(R) has all nonleading coefficients in p.
(c) Write x = rs with r ∈ R r p and s ∈ S rQ. Show that g(s) = f(rs)/rn is the minimal

polynomial of s over Frac(R).
(d) Show that g(s) has coefficients in R, and obtain a contradiction to the assumption that x was

an element of the intersection.

(a) It will follow that there is a prime ideal q containing pS that does not intersect (S r
Q)(R r p); in particular it intersects neither. This means that q ∩ R ⊇ p, and q ⊆ Q,
and q ∩R ⊆ p, so q ∩R = p and q ⊆ Q.

(b) First we check that f(x) has coefficients in R. To do this, take an algebraic closure of
Frac(R) and let x = x1, . . . , xt be the distinct roots of f . By definition, f divides a
monic equation for x, so each xi is integral over R. Then T = R[x1, . . . , xt] is integral
over R. The coefficients of f lie in T ∩ Frac(R), but this is R, since R is normal.

3Hint: Recall an old fact about integral extensions of domains. . .
4Hint: First show all the coefficients are in R. For this, note that every coefficient of the minimal polynomial is a polynomial
expression of the roots of f in an algebraic closure of Frac(R).



Now consider the image of f(X) ∈ R[X] modulo p. Since f divides an integral equation
with coefficients in p, the image of f divides Xk in R/p[X], so f itself must have all
lower coefficients in p.

(c) If not, we would get a lower degree polynomial that x satisfies, contradicting that f is
the minimal monic polynomial of x.

(d) This follows from the same argument as in part (b). Then each ai/r
i is an element of

R. But r /∈ p and ai ∈ p implies that each coefficient of g is in p, so s ∈
√
pS ⊆ Q, a

contradiction.

(6) (a) Show that if S is module-finite over R with t generators, then for every p ∈ Spec(R), at
most t distinct primes of S contract to p.

(b) Give an example of an integral inclusion R ⊆ S such that there are primes of R with
arbitrarily many primes contracting to it.

(a) As in the proof of Incomparability, this reduces to the case where R = K is a field. We
claim that an integral extension of a field K that is a t-dimensional vector space has at
most t maximal ideals. Let m1, . . . ,ms be the maximal ideals of S. Since mi +mj = S
for each i 6= j, CRT applies, and S/(m1 · · ·ms) ∼= S/m1 × · · · × S/ms. The K-vector
space dimension of the LHS is at most t, whereas the K-vectorspace dimension of the
RHS is at least s, so s ≤ t, as desired.

(b) One possibility is R := C[X1, X
2
2 , X

3
3 , X

4
4 , . . . ] ⊆ S := C[X1, X2, X3, X4, . . . ]. This is

integrally generated, hence integral. Note that (X t
t − 1) in R is a prime ideal, and for

each j = 0 . . . , t− 1, the prime (Xt − e2πij/t) of S contracts to it.


