§7.31: COHEN-SEIDENBERG THEOREMS: PROOFS

LYING OVER: Let R C S be an integral inclusion. Then the induced map Spec(S) — Spec(R) is
surjective. That is, for any prime p € Spec(R), there is a prime q € Spec(.S) such that ¢ N R = p;
i.e., a prime lying over p.

INCOMPARABILITY: Let R — S be integral (but not necessarily injective). Then for any
q1, 92 € Spec(S) such that q; N R = go N R, we have q; ¢ qo. That is, any two primes lying
over the same prime are incomparable.

GOING Up: Let R — S be integral (but not necessarily injective). Then for any p ;Ct B in Spec(R)
and q € Spec(S) such that g R = p, there is some 9 € Spec(S) such that ¢ C Q and QN R = ‘.

GOING DOWN: Let R C S be an integral inclusion of domains, and assume that R is normal. Then
for any p G P in Spec(R) and Q € Spec(S) such that Q N R = B, there is some q € Spec(S) such
thatq C QandqN R = p.

LEMMA: Let R C S be an integral inclusion and [/ an ideal of R. Then any element of s € IS
satisfies a monic equation over R of the form'

sS"a s 4+ 4+a, =0 with a; € I for all 7.

(1) Proof of Lying Over from the Lemma: Let R C S be an integral inclusion.
(@) Use the Lemma to show that if p is prime, then pS N R = p.
(b) Show that (R~ p)~!(S/pS) is not the zero “ring”.
(c) Deduce? the Theorem.

(a) Letr € pSNR. By the Lemma, we have an equation of the form " +a;r" 1 +- - -+a, =
0 with a; € p, sor™ € p, and hence r € p.

(b) Since pS N R = p, we have pS N (R \ p) = & so this is a legitimate ring.

(c) We have Spec((R ~ p)~'(S/pS)) + {q € Spec(S) | g 2 pSand qN R C p}. The
condition on the RHS is equivalent to N R = p. We have that Spec((R~p)~1(S/pS)) #
&, 0 some prime contracts to p.

(2) Proof of Lemma: Let R C S be an integral inclusion and [ an ideal of R.
(@) Show that if s € IS, then there is a module-finite R-subalgebra of S, say 7', such that
s € IT, so we can assume that S is module-finite.
(b) Write S = ), Rs; and v = [sq, ..., s;]. Show that there is some ¢ x ¢ matrix A with entries
in I such that rv = vA.
(c) Apply a TRICK and conclude the proof.

@ If s =) a;b; witha; € T and b; € S, take T = R[by, ..., by].

(b) We can write rs; = ) ; @ijsj with a;; € I. This gives the matrix equation we seek.

(c) By the eigenvector trick, we have det(A — r1)v = 0. In particular, det(A — r1)S = 0,
so det(A — r1) = 0. Thinking of this as the evaluation of the polynomial expression

In fact, one can take a; € I* for each 4 by the same proof, which is often useful.
2The old bijection Spec(W ~1(T/.J)) +— {q € Spec(T) | N W = @ and J C q} may come in handy.



det(A — X1), this is monic in X and going modulo [ this becomes +X", so all the
lower terms are in /. Thus, it is the polynomial that we seek.

(3) Proof of Incomparability: Let & — S be integral.
(@) Explain® why the Theorem is true when R is a field.
(b) Let p in Spec(R). Use the definition to explain why the map R/p — S/pS is integral, and
why the map (R~ p) "1 (R/p) — (R~ p)~1(S/pS) is integral.
(c) Use the previous parts (plus an old bijection) to prove the Theorem.

(a) If K is a field then any prime of S contracts to 0. But given any prime q of S, S/q is a
domain and K C S/q is integral, so S/q is a field. Thus every prime in S is maximal,
and we are done.

(b) For any element of S/pS, an integral equation over R for a representative is an inte-
gral equation over R/p. Given s/w, one can take an integral equation for s and divide
through by a suitable power of w to get an integral equation.

(c) The primes that contract to p are in bijection with primes of (R~ p)~1(S/pS). But this
is integral over the field (R~ p)~'(R/p), where the primes are incomparable by part (a).

(4) Proof of Going Up: Show that R/p — S/q is an integral inclusion, apply Lying Over, and deduce
the Theorem.

This is an inclusion since the kernel of R — S/q is q N R = p; it is integral, as an equation
for a representative holds for an element of S/q. By Lying over, there is a prime of S/q that
contracts to J3/p. We can write this prime as £ /q for some Q O . Then Q N R, which one
checks directly is 3.

(5) Proof of Going Down.

(a) Explain why it suffices to show that (S ~\ Q)(R ~ p) N pS is empty.

(b) Let x be an element of the intersection. Show that* the minimal monic polynomial f(x) of
x over Frac(R) has all nonleading coefficients in p.

(c) Write x = rs withr € R~ pand s € S~ Q. Show that g(s) = f(rs)/r™ is the minimal
polynomial of s over Frac(R).

(d) Show that g(s) has coefficients in R, and obtain a contradiction to the assumption that x was
an element of the intersection.

(a) It will follow that there is a prime ideal q containing p.S that does not intersect (S
Q)(R ~\ p); in particular it intersects neither. This means that q N R 2 p, and q C Q,
andqNRCp,sogNR=pandqC Q.

(b) First we check that f(z) has coefficients in R. To do this, take an algebraic closure of
Frac(R) and let © = xy,...,x,; be the distinct roots of f. By definition, f divides a
monic equation for z, so each z; is integral over R. Then T' = R|xy, ..., ;] is integral
over R. The coefficients of f lie in 7" N Frac(R), but this is R, since R is normal.

3Hint: Recall an old fact about integral extensions of domains. ..
“*Hint: First show all the coefficients are in R. For this, note that every coefficient of the minimal polynomial is a polynomial
expression of the roots of f in an algebraic closure of Frac(R).



Now consider the image of f(X) € R[X] modulo p. Since f divides an integral equation
with coefficients in p, the image of f divides X* in R/p[X], so f itself must have all
lower coefficients in p.

(c) If not, we would get a lower degree polynomial that x satisfies, contradicting that f is
the minimal monic polynomial of x.

(d) This follows from the same argument as in part (b). Then each a;/r is an element of
R. Butr ¢ p and a; € p implies that each coefficient of g is in p, so s € /pS C Q, a
contradiction.

(6) (a) Show that if S is module-finite over R with ¢ generators, then for every p € Spec(R), at
most ¢ distinct primes of S’ contract to p.

(b) Give an example of an integral inclusion & C S such that there are primes of R with
arbitrarily many primes contracting to it.

(a) As in the proof of Incomparability, this reduces to the case where R = K is a field. We
claim that an integral extension of a field K that is a ¢-dimensional vector space has at
most ¢ maximal ideals. Let my, ..., m, be the maximal ideals of S. Since m; +m; = S
for each i # j, CRT applies, and S/(m; ---my) = S/my x --- x S/m,. The K-vector
space dimension of the LHS is at most ¢, whereas the K -vectorspace dimension of the
RHS is at least s, so s < ¢, as desired.

(b) One possibility is R := C[ X, X2, X3, X{,...] € S = C[X;, Xy, X3, Xy, ...]. This is
integrally generated, hence integral. Note that (X} — 1) in R is a prime ideal, and for
each j =0...,t — 1, the prime (X; — >/t of S contracts to it.




