§7.31: COHEN-SEIDENBERG THEOREMS: PROOFS

LYING OVER: Let R C S be an integral inclusion. Then the induced map Spec(S) — Spec(R) is
surjective. That is, for any prime p € Spec(R), there is a prime q € Spec(.S) such that ¢ N R = p;
i.e., a prime lying over p.

INCOMPARABILITY: Let R — S be integral (but not necessarily injective). Then for any
q1, 92 € Spec(S) such that q; N R = go N R, we have q; ¢ qo. That is, any two primes lying
over the same prime are incomparable.

GOING Up: Let R — S be integral (but not necessarily injective). Then for any p ;Ct B in Spec(R)
and q € Spec(S) such that g R = p, there is some 9 € Spec(S) such that ¢ C Q and QN R = ‘.

GOING DOWN: Let R C S be an integral inclusion of domains, and assume that R is normal. Then
for any p G P in Spec(R) and Q € Spec(S) such that Q N R = B, there is some q € Spec(S) such
thatq C QandqN R = p.

LEMMA: Let R C S be an integral inclusion and [/ an ideal of R. Then any element of s € IS
satisfies a monic equation over R of the form'

sS"a s 4+ 4+a, =0 with a; € I for all 7.

(1) Proof of Lying Over from the Lemma: Let R C S be an integral inclusion.
(@) Use the Lemma to show that if p is prime, then pS N R = p.
(b) Show that (R~ p)~'(S/pS) is not the zero “ring”.
(c) Deduce? the Theorem.

(2) Proof of Lemma: Let R C S be an integral inclusion and [ an ideal of R.
(@) Show that if s € IS, then there is a module-finite R-subalgebra of S, say 7', such that
s € IT, so we can assume that .S is module-finite.
(b) Write S = ), Rs; and v = [sq, ..., 5. Show that there is some ¢ x ¢ matrix A with entries
in I such that rv = vA.
(c) Apply a TRICK and conclude the proof.

(3) Proof of Incomparability: Let R — S be integral.
(@) Explain® why the Theorem is true when R is a field.
() Let p in Spec(R). Use the definition to explain why the map R/p — S/pS is integral, and
why the map (R~ p)~'(R/p) — (R~ p)~1(S/pS) is integral.
(c) Use the previous parts (plus an old bijection) to prove the Theorem.

(4) Proof of Going Up: Show that R/p — S/q is an integral inclusion, apply Lying Over, and deduce
the Theorem.

'n fact, one can take a; € I’ for each i by the same proof, which is often useful.
2The old bijection Spec(W ~(T'/.J)) «— {q € Spec(T) | g W = @ and .J C q} may come in handy.
3Hint: Recall an old fact about integral extensions of domains. ..



(5) Proof of Going Down.
(a) Explain why it suffices to show that (S ~\ Q)(R ~ p) N pS is empty.
(b) Let 2 be an element of the intersection. Show that* the minimal monic polynomial f(x) of
x over Frac(R) has all nonleading coefficients in p.
(c) Write x = rs withr € R~ pand s € S\ Q. Show that g(s) = f(rs)/r™ is the minimal
polynomial of s over Frac(R).
(d) Show that g(s) has coefficients in R, and obtain a contradiction to the assumption that x was

an element of the intersection.

(6) (a) Show that if S is module-finite over R with ¢ generators, then for every p € Spec(R), at
most ¢ distinct primes of .S’ contract to p.

(b) Give an example of an integral inclusion R C S such that there are primes of R with
arbitrarily many primes contracting to it.

“*Hint: First show all the coefficients are in R. For this, note that every coefficient of the minimal polynomial is a polynomial
expression of the roots of f in an algebraic closure of Frac(R).



