
§7.31: COHEN-SEIDENBERG THEOREMS: PROOFS

LYING OVER: Let R ⊆ S be an integral inclusion. Then the induced map Spec(S)→ Spec(R) is
surjective. That is, for any prime p ∈ Spec(R), there is a prime q ∈ Spec(S) such that q ∩ R = p;
i.e., a prime lying over p.

INCOMPARABILITY: Let R → S be integral (but not necessarily injective). Then for any
q1, q2 ∈ Spec(S) such that q1 ∩ R = q2 ∩ R, we have q1 6* q2. That is, any two primes lying
over the same prime are incomparable.

GOING UP: Let R → S be integral (but not necessarily injective). Then for any p $ P in Spec(R)
and q ∈ Spec(S) such that q∩R = p, there is some Q ∈ Spec(S) such that q ⊆ Q and Q∩R = P.

GOING DOWN: Let R ⊆ S be an integral inclusion of domains, and assume that R is normal. Then
for any p $ P in Spec(R) and Q ∈ Spec(S) such that Q ∩R = P, there is some q ∈ Spec(S) such
that q ⊆ Q and q ∩R = p.

LEMMA: Let R ⊆ S be an integral inclusion and I an ideal of R. Then any element of s ∈ IS
satisfies a monic equation over R of the form1

sn + a1s
n−1 + · · ·+ an = 0 with ai ∈ I for all i.

(1)(1) Proof of Lying Over from the Lemma: Let R ⊆ S be an integral inclusion.
(a)(a) Use the Lemma to show that if p is prime, then pS ∩R = p.
(b)(b) Show that (Rr p)−1(S/pS) is not the zero “ring”.
(c)(c) Deduce2 the Theorem.

(2)(2) Proof of Lemma: Let R ⊆ S be an integral inclusion and I an ideal of R.
(a)(a) Show that if s ∈ IS, then there is a module-finite R-subalgebra of S, say T , such that

s ∈ IT , so we can assume that S is module-finite.
(b)(b) Write S =

∑
i Rsi and v = [s1, . . . , st]. Show that there is some t× t matrix A with entries

in I such that rv = vA.
(c)(c) Apply a TRICK and conclude the proof.

(3)(3) Proof of Incomparability: Let R→ S be integral.
(a)(a) Explain3 why the Theorem is true when R is a field.
(b)(b) Let p in Spec(R). Use the definition to explain why the map R/p → S/pS is integral, and

why the map (Rr p)−1(R/p)→ (Rr p)−1(S/pS) is integral.
(c)(c) Use the previous parts (plus an old bijection) to prove the Theorem.

(4) Proof of Going Up: Show that R/p→ S/q is an integral inclusion, apply Lying Over, and deduce
the Theorem.

1In fact, one can take ai ∈ Ii for each i by the same proof, which is often useful.
2The old bijection Spec(W−1(T/J))←→ {q ∈ Spec(T ) | q ∩W = ∅ and J ⊆ q} may come in handy.
3Hint: Recall an old fact about integral extensions of domains. . .



(5) Proof of Going Down.
(a) Explain why it suffices to show that (S rQ)(Rr p) ∩ pS is empty.
(b) Let x be an element of the intersection. Show that4 the minimal monic polynomial f(x) of

x over Frac(R) has all nonleading coefficients in p.
(c) Write x = rs with r ∈ R r p and s ∈ S rQ. Show that g(s) = f(rs)/rn is the minimal

polynomial of s over Frac(R).
(d) Show that g(s) has coefficients in R, and obtain a contradiction to the assumption that x was

an element of the intersection.

(6) (a) Show that if S is module-finite over R with t generators, then for every p ∈ Spec(R), at
most t distinct primes of S contract to p.

(b) Give an example of an integral inclusion R ⊆ S such that there are primes of R with
arbitrarily many primes contracting to it.

4Hint: First show all the coefficients are in R. For this, note that every coefficient of the minimal polynomial is a polynomial
expression of the roots of f in an algebraic closure of Frac(R).


