LYING OVER: Let $R \subseteq S$ be an integral inclusion. Then the induced map $\text{Spec}(S) \to \text{Spec}(R)$ is surjective. That is, for any prime $\mathfrak{p} \in \text{Spec}(R)$, there is a prime $\mathfrak{q} \in \text{Spec}(S)$ such that $\mathfrak{q} \cap R = \mathfrak{p}$; i.e., a prime *lying over* \mathfrak{p} .

INCOMPARABILITY: Let $R \to S$ be integral (but not necessarily injective). Then for any $\mathfrak{q}_1, \mathfrak{q}_2 \in \operatorname{Spec}(S)$ such that $\mathfrak{q}_1 \cap R = \mathfrak{q}_2 \cap R$, we have $\mathfrak{q}_1 \not\subseteq \mathfrak{q}_2$. That is, any two primes lying over the same prime are *incomparable*.

GOING UP: Let $R \to S$ be integral (but not necessarily injective). Then for any $\mathfrak{p} \subsetneqq \mathfrak{P}$ in $\operatorname{Spec}(R)$ and $\mathfrak{q} \in \operatorname{Spec}(S)$ such that $\mathfrak{q} \cap R = \mathfrak{p}$, there is some $\mathfrak{Q} \in \operatorname{Spec}(S)$ such that $\mathfrak{q} \subseteq \mathfrak{Q}$ and $\mathfrak{Q} \cap R = \mathfrak{P}$.

GOING DOWN: Let $R \subseteq S$ be an integral inclusion of domains, and assume that R is normal. Then for any $\mathfrak{p} \subsetneq \mathfrak{P}$ in $\operatorname{Spec}(R)$ and $\mathfrak{Q} \in \operatorname{Spec}(S)$ such that $\mathfrak{Q} \cap R = \mathfrak{P}$, there is some $\mathfrak{q} \in \operatorname{Spec}(S)$ such that $\mathfrak{q} \subseteq \mathfrak{Q}$ and $\mathfrak{q} \cap R = \mathfrak{p}$.

LEMMA: Let $R \subseteq S$ be an integral inclusion and I an ideal of R. Then any element of $s \in IS$ satisfies a monic equation over R of the form¹

 $s^n + a_1 s^{n-1} + \dots + a_n = 0$ with $a_i \in I$ for all i.

- (1) Proof of Lying Over from the Lemma: Let $R \subseteq S$ be an integral inclusion.
 - (a) Use the Lemma to show that if \mathfrak{p} is prime, then $\mathfrak{p}S \cap R = \mathfrak{p}$.
 - **(b)** Show that $(R \setminus \mathfrak{p})^{-1}(S/\mathfrak{p}S)$ is not the zero "ring".
 - (c) Deduce² the Theorem.

(2) Proof of Lemma: Let $R \subseteq S$ be an integral inclusion and I an ideal of R.

- (a) Show that if $s \in IS$, then there is a module-finite *R*-subalgebra of *S*, say *T*, such that $s \in IT$, so we can assume that *S* is module-finite.
- (b) Write $S = \sum_{i} Rs_i$ and $v = [s_1, \ldots, s_t]$. Show that there is some $t \times t$ matrix A with entries in I such that rv = vA.
- (c) Apply a TRICK and conclude the proof.
- (3) Proof of Incomparability: Let $R \to S$ be integral.
 - (a) Explain³ why the Theorem is true when R is a field.
 - (b) Let \mathfrak{p} in Spec(R). Use the definition to explain why the map $R/\mathfrak{p} \to S/\mathfrak{p}S$ is integral, and why the map $(R \smallsetminus \mathfrak{p})^{-1}(R/\mathfrak{p}) \to (R \backsim \mathfrak{p})^{-1}(S/\mathfrak{p}S)$ is integral.
 - (c) Use the previous parts (plus an old bijection) to prove the Theorem.
- (4) Proof of Going Up: Show that R/p → S/q is an integral inclusion, apply Lying Over, and deduce the Theorem.

¹In fact, one can take $a_i \in I^i$ for each *i* by the same proof, which is often useful.

²The old bijection $\operatorname{Spec}(W^{-1}(T/J)) \longleftrightarrow \{\mathfrak{q} \in \operatorname{Spec}(T) \mid \mathfrak{q} \cap W = \emptyset \text{ and } J \subseteq \mathfrak{q}\}$ may come in handy.

³Hint: Recall an old fact about integral extensions of domains...

- (5) Proof of Going Down.
 - (a) Explain why it suffices to show that $(S \setminus \mathfrak{Q})(R \setminus \mathfrak{p}) \cap \mathfrak{p}S$ is empty.
 - (b) Let x be an element of the intersection. Show that⁴ the minimal monic polynomial f(x) of x over Frac(R) has all nonleading coefficients in p.
 - (c) Write x = rs with $r \in R \setminus p$ and $s \in S \setminus \mathfrak{Q}$. Show that $g(s) = f(rs)/r^n$ is the minimal polynomial of s over $\operatorname{Frac}(R)$.
 - (d) Show that g(s) has coefficients in R, and obtain a contradiction to the assumption that x was an element of the intersection.
- (6) (a) Show that if S is module-finite over R with t generators, then for every $\mathfrak{p} \in \operatorname{Spec}(R)$, at most t distinct primes of S contract to \mathfrak{p} .
 - (b) Give an example of an integral inclusion $R \subseteq S$ such that there are primes of R with arbitrarily many primes contracting to it.

⁴Hint: First show all the coefficients are in R. For this, note that every coefficient of the minimal polynomial is a polynomial expression of the roots of f in an algebraic closure of Frac(R).