LYING OVER: Let $R \subseteq S$ be an integral inclusion. Then the induced map $Spec(S) \rightarrow Spec(R)$ is surjective. That is, for any prime $\mathfrak{p} \in \text{Spec}(R)$, there is a prime $\mathfrak{q} \in \text{Spec}(S)$ such that $\mathfrak{q} \cap R = \mathfrak{p}$; i.e., a prime *lying over* p.

INCOMPARABILITY: Let $R \rightarrow S$ be integral (but not necessarily injective). Then for any $\mathfrak{q}_1, \mathfrak{q}_2 \in \text{Spec}(S)$ such that $\mathfrak{q}_1 \cap R = \mathfrak{q}_2 \cap R$, we have $\mathfrak{q}_1 \nsubseteq \mathfrak{q}_2$. That is, any two primes lying over the same prime are *incomparable*.

GOING UP: Let $R \to S$ be integral (but not necessarily injective). Then for any $\mathfrak{p} \subsetneq \mathfrak{P}$ in $\text{Spec}(R)$ and $\mathfrak{q} \in \text{Spec}(S)$ such that $\mathfrak{q} \cap \overline{R} = \mathfrak{p}$, there is some $\mathfrak{Q} \in \text{Spec}(S)$ such that $\mathfrak{q} \subseteq \mathfrak{Q}$ and $\mathfrak{Q} \cap R = \mathfrak{P}$.

GOING DOWN: Let $R \subseteq S$ be an integral inclusion of domains, and assume that R is normal. Then for any $\mathfrak{p} \subsetneq \mathfrak{P}$ in $Spec(R)$ and $\mathfrak{Q} \in Spec(S)$ such that $\mathfrak{Q} \cap R = \mathfrak{P}$, there is some $\mathfrak{q} \in Spec(S)$ such that $\mathfrak{q} \subseteq \mathfrak{Q}$ and $\mathfrak{q} \cap R = \mathfrak{p}$.

LEMMA: Let $R \subseteq S$ be an integral inclusion and I an ideal of R. Then any element of $s \in IS$ satisfies a monic equation over R of the form¹

 $s^{n} + a_{1}s^{n-1} + \cdots + a_{n} = 0$ with $a_{i} \in I$ for all *i*.

- (1) Proof of Lying Over from the Lemma: Let $R \subseteq S$ be an integral inclusion.
	- (a) Use the Lemma to show that if p is prime, then $pS \cap R = p$.
	- (b) Show that $(R \setminus \mathfrak{p})^{-1}(S/\mathfrak{p}S)$ is not the zero "ring".
	- (c) $Deduce²$ the Theorem.

(2) Proof of Lemma: Let $R \subseteq S$ be an integral inclusion and I an ideal of R.

- (a) Show that if $s \in IS$, then there is a module-finite R-subalgebra of S, say T, such that $s \in IT$, so we can assume that S is module-finite.
- **(b)** Write $S = \sum_i R s_i$ and $v = [s_1, \dots, s_t]$. Show that there is some $t \times t$ matrix A with entries in I such that $rv = vA$.
- (c) Apply a TRICK and conclude the proof.
- (3) Proof of Incomparability: Let $R \to S$ be integral.
	- (a) Explain³ why the Theorem is true when R is a field.
	- **(b)** Let p in $Spec(R)$. Use the definition to explain why the map $R/\mathfrak{p} \to S/\mathfrak{p}S$ is integral, and why the map $(R \setminus \mathfrak{p})^{-1}(R/\mathfrak{p}) \to (R \setminus \mathfrak{p})^{-1}(S/\mathfrak{p}S)$ is integral.
	- (c) Use the previous parts (plus an old bijection) to prove the Theorem.
- (4) Proof of Going Up: Show that $R/\mathfrak{p} \to S/\mathfrak{q}$ is an integral inclusion, apply Lying Over, and deduce the Theorem.

¹In fact, one can take $a_i \in I^i$ for each i by the same proof, which is often useful.

²The old bijection Spec($W^{-1}(T/J)$) \longleftrightarrow {q \in Spec(T) | q $\cap W = \emptyset$ and $J \subseteq \mathfrak{q}$ } may come in handy.

 3 Hint: Recall an old fact about integral extensions of domains...

- (5) Proof of Going Down.
	- (a) Explain why it suffices to show that $(S \setminus \mathfrak{Q})(R \setminus \mathfrak{p}) \cap \mathfrak{p}S$ is empty.
	- (b) Let x be an element of the intersection. Show that⁴ the minimal monic polynomial $f(x)$ of x over $Frac(R)$ has all nonleading coefficients in p.
	- (c) Write $x = rs$ with $r \in R \setminus \mathfrak{p}$ and $s \in S \setminus \mathfrak{Q}$. Show that $g(s) = f(rs)/r^n$ is the minimal polynomial of s over $Frac(R)$.
	- (d) Show that $g(s)$ has coefficients in R, and obtain a contradiction to the assumption that x was an element of the intersection.
- (6) (a) Show that if S is module-finite over R with t generators, then for every $p \in Spec(R)$, at most t distinct primes of S contract to \mathfrak{p} .
	- (b) Give an example of an integral inclusion $R \subseteq S$ such that there are primes of R with arbitrarily many primes contracting to it.

⁴Hint: First show all the coefficients are in R. For this, note that every coefficient of the minimal polynomial is a polynomial expression of the roots of f in an algebraic closure of $Frac(R)$.