LYING OVER: Let $R \subseteq S$ be an integral inclusion. Then the induced map $Spec(S) \to Spec(R)$ is surjective. That is, for any prime $\mathfrak{p} \in Spec(R)$, there is a prime $\mathfrak{q} \in \text{Spec}(S)$ such that $\mathfrak{q} \cap R = \mathfrak{p}$; i.e., a prime *lying over* \mathfrak{p} .

INCOMPARABILITY: Let $R \to S$ be integral (but not necessarily injective). Then for any $\mathfrak{q}_1, \mathfrak{q}_2 \in \text{Spec}(S)$ such¹ that $\mathfrak{q}_1 \cap R = \mathfrak{q}_2 \cap R$, we have $\mathfrak{q}_1 \nsubseteq \mathfrak{q}_2$. That is, any two primes lying over the same prime are *incomparable*.

GOING UP: Let $R \to S$ be integral (but not necessarily injective). Then for any $\mathfrak{p} \subsetneq \mathfrak{P}$ in $Spec(R)$ and $\mathfrak{q} \in Spec(S)$ such that $\mathfrak{q} \cap R = \mathfrak{p}$, there is some $\mathfrak{Q} \in Spec(S)$ such that $\mathfrak{q} \subseteq \mathfrak{Q}$ and $\mathfrak{Q} \cap R = \mathfrak{P}$.

GOING DOWN: Let $R \subseteq S$ be an integral inclusion of domains, and assume that R is normal. Then for any $\mathfrak{p} \subsetneq \mathfrak{P}$ in $Spec(R)$ and $\mathfrak{Q} \in Spec(S)$ such that $\mathfrak{Q} \cap R = \mathfrak{P}$, there is some $\mathfrak{q} \in \text{Spec}(S)$ such that $\mathfrak{q} \subseteq \mathfrak{Q}$ and $\mathfrak{q} \cap R = \mathfrak{p}$.

COROLLARY: Let $R \to S$ be integral.

- (1) If S is Noetherian, then for any $p \in Spec(R)$, the set of primes in S that contract to p is finite.
- (2) If $R \subseteq S$ is an inclusion, and S is Noetherian, then for any $\mathfrak{p} \in \text{Spec}(R)$, the set of primes in S that contract to $\mathfrak p$ is nonempty and finite.
- (3) For any $q \in \text{Spec}(S)$, we have height($q \in \text{height}(q \cap R)$.
- (4) dim $(S) \leq \dim(R)$.
- (5) If $R \subseteq S$ is an inclusion, then $\dim(R) = \dim(S)$.
- (6) If $R \subseteq S$ is an inclusion, R is a normal domain, and S is a domain, then for any $\mathfrak{q} \in \text{Spec}(S)$, we have height(\mathfrak{q}) = height($\mathfrak{q} \cap R$).
- (1) Hypotheses of Lying Over and Incomparability:
	- (a) Consider the inclusion map $\mathbb{Z} \subseteq \mathbb{Q}$. Show that the conclusion of Lying Over fails. Which hypotheses are true?
	- (b) Consider the quotient map $\mathbb{C}[X] \to \mathbb{C}[X]/(X) \cong \mathbb{C}$. Show that the conclusion of Lying Over fails. Which hypotheses are true?
	- (c) Consider the inclusion map $\mathbb{C} \subseteq \mathbb{C}[X]$. Show that the conclusion of Incomparability fails. Which hypotheses are true?
	- (d) Consider the inclusion map $R := \mathbb{C}[X^2] \subseteq S := \mathbb{C}[X]$. Describe all of the primes \mathfrak{q}_i that contract to $\mathfrak{p} := (X^2 - 1)R$. Verify the conclusions on Incomparability and Lying Over for p and the q_i .

¹Reminder: by abuse of notation, even when $\phi : R \to S$ is not injective, we write $\mathfrak{q} \cap R$ for $\phi^{-1}(\mathfrak{q}) \subseteq R$.

- (2) Proof of Corollary using the theorems: Let $R \rightarrow S$ be integral.
	- (a) Use one of the Theorems above to show that for any chain of primes

$$
\mathfrak{q}_0 \subsetneqq \mathfrak{q}_1 \subsetneqq \cdots \subsetneqq \mathfrak{q}_n = \mathfrak{q} \quad \text{in } \mathrm{Spec}(S)
$$

the containments

$$
(\mathfrak{q}_0 \cap R) \subseteq (\mathfrak{q}_1 \cap R) \subseteq \cdots \subseteq (\mathfrak{q}_n \cap R) = (\mathfrak{q} \cap R) \text{ in } \operatorname{Spec}(R)
$$

are proper. Explain why this implies Part (3).

- **(b)** Deduce part (4) from part (3) .
- (c) Let $R \subseteq S$ be an inclusion, and take a chain of primes

$$
\mathfrak{p}_0 \subsetneq \mathfrak{p}_1 \subsetneq \cdots \subsetneq \mathfrak{p}_n \quad \text{in } \operatorname{Spec}(R).
$$

Use Lying Over and Going up to find a chain of primes

$$
\mathfrak{q}_0 \subsetneqq \mathfrak{q}_1 \subsetneqq \cdots \subsetneqq \mathfrak{q}_n \qquad \text{in } \operatorname{Spec}(S)
$$

such that $\mathfrak{q}_i \cap R = \mathfrak{p}_i$ for all *i*. Deduce part (5).

- (d) Prove part (6) .
- (e) Let $\mathfrak{q} \in \text{Spec}(S)$ and $\mathfrak{p} \in \text{Spec}(R)$. Show that if $\mathfrak{q} \cap R = \mathfrak{p}$, then $\mathfrak{q} \supseteq \mathfrak{p}S$, and if \mathfrak{q}_0 is some prime of S such that $\mathfrak{p}S \subset \mathfrak{q}_0 \subset \mathfrak{q}$, then $\mathfrak{q}_0 \cap R = \mathfrak{p}$ also.
- (f) Show that every prime that contracts to p is a minimal prime of pS , and deduce parts (1) and (2) .
- (3) Hypotheses of Going Down:
	- (a) Consider the inclusion map $\mathbb{C}[X] \subseteq \mathbb{C}[X, Y]/(XY, Y^2 Y)$. Show that² the conclusion of Going Down fails. Which hypotheses are true?
	- (b) Consider the inclusion map $\mathbb{C}[X(1-X), X^2(1-X), Y, XY] \subseteq \mathbb{C}[X, Y]$. Show that³ the conclusion of Going Down fails. Which hypotheses are true?

²Consider $(1 - y)$, (X) , and (0) .

³Consider $(1 - X, Y)$, $(X(1 - X), X^2(1 - X), Y, XY)$, and $(1 - X, Y) \cap R$.