
§7.29: DIMENSION AND HEIGHT

DEFINITION: Let R be a ring.
• A chain of primes of length n is

p0 $ p1 $ · · · $ pn with pi ∈ Spec(R).

We may say this chain is from p0 and/or to pn to indicate the minimal and/or maximal elements.
• A chain of primes as above is saturated if for each i, there is no prime q such that pi $ q $ pi+1.
• The dimension of R is

dim(R) := sup{n ≥ 0 | there is a chain of primes of length n in Spec(R)}.
• The height of a prime ideal p ∈ Spec(R) is

height(p) := sup{n ≥ 0 | there is a chain of primes to p of length n in Spec(R)}.
• The height of an arbitrary proper ideal I ⊆ R is

height(I) := inf{height(p) | p ∈ Min(I)}.

(1)(1) Let K be field. Use the definition of dimension to prove the following:
(a)(a) dim(K) = 0.
(b)(b) If R is a PID, but not a field, then dim(R) = 1.
(c)(c) dim(K[X1, . . . , Xn]) ≥ n.
(d)(d) dim(KJX1, . . . , XnK) ≥ n.
(e)(e) dim(K[X1, X2, X3, . . . ]) =∞.

(a)(a) The only prime is (0) so every chain has length zero.
(b)(b) Every nonzero prime is maximal, so the longest chains have length one.
(c)(c) There is a chain (0) $ (X1) $ (X1, X2) $ · · · $ (X1, . . . , Xn).
(d)(d) Same as above.
(e)(e) Same as above by keep going.

(2)(2) Let R be a ring, I an ideal, and p a prime ideal. Use the definitions to prove the following:
(a)(a) height(p) = 0 if and only if p ∈ Min(R).
(b)(b) height(I) = 0 if and only if I ⊆ p for some p ∈ Min(R).
(c)(c) If R is a domain and I 6= 0, then height(I) > 0.
(d)(d) dim(R/p) = sup{n ≥ 0 | there is a chain of primes of length n in V (p)}.
(e)(e) dim(R/I) = sup{n ≥ 0 | there is a chain of primes of length n in V (I)}.
(f)(f) If R is a domain and I 6= 0, and dim(R) <∞, then dim(R/I) < dim(R).
(g)(g) dim(R) = sup{dim(R/p) | p ∈ Min(R)}.
(h)(h) dim(Rp) = height(p).
(i)(i) dim(R) = sup{dim(Rm) | m ∈ Max(R)}.

(j)(j) height(p) + dim(R/p) = sup

{
n ≥ 0

∣∣∣ there is a chain of primes of length n

in Spec(R) such that pi = p for some i

}
(k)(k) height(p) + dim(R/p) ≤ dim(R).

(l)(l) height(I) + dim(R/I)≤ sup

{
n ≥ 0

∣∣∣ there is a chain of primes of length n

in Spec(R) such that pi ∈ Min(I) for some i

}
.

(m)(m) height(I) + dim(R/I) ≤ dim(R).



(a)(a) Height zero means it can’t contain any other primes, because that would be a recipe for a
chain of positive length.

(b)(b) Height zero means some minimal prime of it is a minimal prime of R. That is the same as
being contained in a minimal prime of R.

(c)(c) The only minimal prime of a domain is zero; see above.
(d)(d) Primes in R/p correspond to primes of R containing p.
(e)(e) Primes of R/I correspond to primes of R containing I .
(f)(f) If R is a domain and I 6= 0, then any prime in V (I) properly contains zero, so a chain in

V (I) can be made one longer by throwing in (0) at the bottom.
(g)(g) (≥) is clear since V (p) ⊆ Spec(R). (≤) follows since any chain of primes in R can be

extended to a chain from a minimal prime.
(h)(h) Primes in Rp correspond to primes of R that are contained in p; thus any chain of primes to

a prime contained in p corresponds to a chain of primes in Rp and conversely.
(i)(i) (≥) is clear since Λ(m) ⊆ Spec(R). (≤) follows since any chain of primes in R can be

extended to a chain to a maximal ideal.
(j)(j) As above, we identify chains of primes in R/p with chains in V (p). For (≥), given such a

chain, break it at p to get a chain to p and a chain from p; the first has length at most height(p)
and the second has length at most dim(R/p). For (≤), given a chain of primes to p and a
chain in V (p), we obtain by concatenation a chain in R whose length is at least the sum of
the lengths.

(k)(k) Clear from the previous.
(l)(l) For (≤), if height(I) ≥ a and dim(R/I) ≥ b , then for every p ∈ Min(I), there is a chain of

primes of p of length at least a, and there exists p0 ∈ Min(I) and a chain of primes from p0
of length b. Concatenating, we get a chain of primes through p0 of length at least a + b. This
shows the inequality.

(m)(m) Clear from the previous.

(3) Dimension vs height
(a) Let K be a field and R = K[X, Y, Z]/(XY,XZ). Let p = (y, z). Compute dim(R/p) and

height(p), and show that dim(R) ≥ 2.
(b) Let R = Z(2)[X]. Let p = (2X − 1). Compute dim(R/p) and1 height(p), and show that

dim(R) ≥ 2.

(a) R/p ∼= K[X] so its dimension is 1. p is minimal so its height is 0. But (x) ⊆ (x, y) ⊆
(x, y, z) shows that dim(R) ≥ 2.

(b) R/p ∼= Z(2)[1/2] ∼= Q so dim(R/p) = 0. p has height 1 since R is a UFD; see below. But R
has dimension at least 2 since one has (0) ⊆ (2) ⊆ (2, X).

(4) Let R be a domain. Show that R is a UFD if and only if every prime ideal of height one is principal.

This solution is embargoed.

(5) Does it follow from the definition that in a Noetherian ring, every prime has finite height?

No, there could be distinct chains that get longer and longer.

1You can use the next problem if you like.



(6) In this problem we will construct a Noetherian ring of infinite dimension. Let K be a field,
S = K[X1,1, X2,1, X2,2, X3,1, X3,2, X3,3, . . . ], and W = S r

⋃
t(Xt,1, . . . , Xt,t).

(a) Let A be a ring. Suppose that Max(A) is finite, Am is Noetherian for every m ∈ Max(A), and
every nonzero element is contained in finitely many maximal ideals. Show that A is Noetherian.

(b) Let pt = (Xt,1, . . . , Xt,t,) for t ≥ 1. Let I be an ideal. Show that if I ⊆
⋃

t≥1 pt, then there is2

some t ≥ 1 such that I ⊆ pt.
(c) Show that R := W−1S is Noetherian and infinite dimensional.

(a) Let I1 ⊆ I2 ⊆ I3 ⊆ · · · be an ascending chain of ideals; without loss of generality, I1
is nonzero. By hypothesis, Vmax(I1) is finite, and Vmax(Ii) ⊇ Vmax(Ii+1) for every i by
definition. A descending chain of finite sets stabilizes, so X = Vmax(Ii) stabilizes. Then for
each m ∈ X , the chain

(I1)m ⊆ (I2)m ⊆ (I3)m ⊆ · · ·
stabilizes. In particular, there is some t such that (Ii)m = (Ii+1)m for all i ≥ t and all maximal
ideals containing Ii+1. Thus, Supp(Ii+1/Ii) contains no maximal ideals, hence is empty, so
Ii = Ii+1 for all i ≥ t; i.e., the chain stabilizes.

(b) If I = 0 this is clear, so suppose I 6= 0, that I ⊆
⋃

i∈N pi. For s ∈ S, set

v(s) := {i | f ∈ pi}.
Since s involves finitely many variables, v(s) is finite for each nonzero s ∈ S. Our hypothesis
translates to saying v(f) is nonempty for each f ∈ I .
We claim that for any f, g ∈ I , there is some h ∈ I with v(h) ⊆ v(f) ∩ v(g). Namely, let
k be larger than the first index of any variable in f or g, and t be an integer greater than the
degree of f and set h = f + xt

kg. Then f and xt
kg have no monomials in common (since the

degrees of all the monomials in xt
kg are at least t and the degree of the monomials in f are

all less than t) so none can cancel from each other. In particular, if x` divides h in T , then x`

divides both f and xt
kg in T ; i.e., v(h) ⊆ v(f) ∩ v(g) as claimed.

Thus, fixing some nonzero f ∈ I , for every g ∈ I , v(f)∩ v(g) is nonempty. That means that
every g ∈ I is in some pi for i ∈ v(f), so I ⊆

⋃
i∈v(f) pi, which is a finite union of primes.

By the usual version of prime avoidance, I ⊆ pi for some i.
(c) Clearly R is infinite dimensional, since for any n, there is a chain of primes contained in pn

of length n, which yields a chain of primes of length n in R. To see that R is Noetherian,
note first that by the previous part, any ideal of S that does not intersect W is contained in
some pt, so every ideal W−1R is contained in some W−1pt, so these are the maximal ideals
of R. Now note that any element considered as a fraction has a numerator in at most finitely
many pn. Moreover, localizing at pt yields ring isomorphic to a localization of polynomial
ring in t variables over a field, which is Noetherian. Thus, by the Lemma, R is Noetherian.

2Note that this looks similar to prime avoidance, but with an infinite set of primes. For f ∈ S, let v(f) := {t | f ∈ pt}. Show that
for any f, g ∈ I , there is some h ∈ I with v(h) ⊆ v(f) ∪ v(g). Then apply prime avoidance.


