DEFINITION: Let R be a ring.

• A chain of primes of length n is

 $\mathfrak{p}_0 \subsetneqq \mathfrak{p}_1 \gneqq \cdots \subsetneqq \mathfrak{p}_n \qquad \text{with } \mathfrak{p}_i \in \operatorname{Spec}(R).$

We may say this chain is **from** \mathfrak{p}_0 and/or **to** \mathfrak{p}_n to indicate the minimal and/or maximal elements.

- A chain of primes as above is **saturated** if for each *i*, there is no prime q such that $\mathfrak{p}_i \subsetneq \mathfrak{q} \subsetneq \mathfrak{p}_{i+1}$.
- The **dimension** of *R* is

 $\dim(R) := \sup\{n \ge 0 \mid \text{there is a chain of primes of length } n \text{ in } \operatorname{Spec}(R)\}.$

• The height of a prime ideal $\mathfrak{p} \in \operatorname{Spec}(R)$ is

height(\mathfrak{p}) := sup{ $n \ge 0$ | there is a chain of primes to \mathfrak{p} of length n in Spec(R)}.

• The **height** of an arbitrary proper ideal $I \subseteq R$ is

$$\operatorname{height}(I) := \inf \{ \operatorname{height}(\mathfrak{p}) \mid \mathfrak{p} \in \operatorname{Min}(I) \}.$$

(1) Let K be field. Use the definition of dimension to prove the following:

(a) $\dim(K) = 0.$

- (b) If R is a PID, but not a field, then $\dim(R) = 1$.
- (c) $\dim(K[X_1,\ldots,X_n]) \ge n$.
- (d) $\dim(K[X_1,\ldots,X_n]) \ge n.$
- (e) $\dim(K[X_1, X_2, X_3, \dots]) = \infty$.

(a) The only prime is (0) so every chain has length zero.

- **(b)** Every nonzero prime is maximal, so the longest chains have length one.
- (c) There is a chain $(0) \subsetneq (X_1) \subsetneq (X_1, X_2) \subsetneq \cdots \subsetneq (X_1, \dots, X_n).$
- (d) Same as above.
- (e) Same as above by keep going.
- (2) Let R be a ring, I an ideal, and \mathfrak{p} a prime ideal. Use the definitions to prove the following:
 - (a) height(\mathfrak{p}) = 0 if and only if $\mathfrak{p} \in Min(R)$.
 - (b) $\operatorname{height}(I) = 0$ if and only if $I \subseteq \mathfrak{p}$ for some $\mathfrak{p} \in \operatorname{Min}(R)$.
 - (c) If R is a domain and $I \neq 0$, then height(I) > 0.
 - (d) $\dim(R/\mathfrak{p}) = \sup\{n \ge 0 \mid \text{there is a chain of primes of length } n \text{ in } V(\mathfrak{p})\}.$
 - (e) $\dim(R/I) = \sup\{n \ge 0 \mid \text{there is a chain of primes of length } n \text{ in } V(I)\}.$
 - (f) If R is a domain and $I \neq 0$, and $\dim(R) < \infty$, then $\dim(R/I) < \dim(R)$.
 - (g) $\dim(R) = \sup\{\dim(R/\mathfrak{p}) \mid \mathfrak{p} \in \operatorname{Min}(R)\}.$
 - **(b)** $\dim(R_{\mathfrak{p}}) = \operatorname{height}(\mathfrak{p}).$
 - (i) $\dim(R) = \sup\{\dim(R_{\mathfrak{m}}) \mid \mathfrak{m} \in \operatorname{Max}(R)\}.$

(j)
$$\operatorname{height}(\mathfrak{p}) + \dim(R/\mathfrak{p}) = \sup \left\{ n \ge 0 \mid \frac{\text{there is a chain of primes of length } n}{\operatorname{in} \operatorname{Spec}(R) \text{ such that } \mathfrak{p}_i = \mathfrak{p} \text{ for some } i} \right\}$$

(k) $\operatorname{height}(\mathfrak{p}) + \dim(R/\mathfrak{p}) \le \dim(R)$.

(1) height(I) + dim(R/I)
$$\leq$$
 sup $\begin{cases} n \geq 0 \\ \text{in Spec}(R) \end{cases}$ there is a chain of primes of length n
in Spec(R) such that $\mathbf{p} \in \text{Min}(I)$ for

$$\left\{ \begin{array}{l} n \geq 0 \\ \end{array} \right\}$$
 in Spec(R) such that $\mathfrak{p}_i \in \operatorname{Min}(I)$ for some $i \int$

(m)
$$\operatorname{height}(I) + \dim(R/I) \le \dim(R)$$
.

- (a) Height zero means it can't contain any other primes, because that would be a recipe for a chain of positive length.
- (b) Height zero means some minimal prime of it is a minimal prime of R. That is the same as being contained in a minimal prime of R.
- (c) The only minimal prime of a domain is zero; see above.
- (d) Primes in R/\mathfrak{p} correspond to primes of R containing \mathfrak{p} .
- (e) Primes of R/I correspond to primes of R containing I.
- (f) If R is a domain and $I \neq 0$, then any prime in V(I) properly contains zero, so a chain in V(I) can be made one longer by throwing in (0) at the bottom.
- (g) (\geq) is clear since $V(\mathfrak{p}) \subseteq \operatorname{Spec}(R)$. (\leq) follows since any chain of primes in R can be extended to a chain from a minimal prime.
- (**h**) Primes in R_p correspond to primes of R that are contained in p; thus any chain of primes to a prime contained in p corresponds to a chain of primes in R_p and conversely.
- (i) (\geq) is clear since $\Lambda(\mathfrak{m}) \subseteq \operatorname{Spec}(R)$. (\leq) follows since any chain of primes in R can be extended to a chain to a maximal ideal.
- (j) As above, we identify chains of primes in R/p with chains in V(p). For (≥), given such a chain, break it at p to get a chain to p and a chain from p; the first has length at most height(p) and the second has length at most dim(R/p). For (≤), given a chain of primes to p and a chain in V(p), we obtain by concatenation a chain in R whose length is at least the sum of the lengths.
- (k) Clear from the previous.
- (1) For (≤), if height(I) ≥ a and dim(R/I) ≥ b, then for every p ∈ Min(I), there is a chain of primes of p of length at least a, and there exists p₀ ∈ Min(I) and a chain of primes from p₀ of length b. Concatenating, we get a chain of primes through p₀ of length at least a + b. This shows the inequality.
- (m) Clear from the previous.
- (3) Dimension vs height
 - (a) Let K be a field and R = K[X, Y, Z]/(XY, XZ). Let $\mathfrak{p} = (y, z)$. Compute dim (R/\mathfrak{p}) and height(\mathfrak{p}), and show that dim $(R) \ge 2$.
 - (b) Let $R = \mathbb{Z}_{(2)}[X]$. Let $\mathfrak{p} = (2X 1)$. Compute $\dim(R/\mathfrak{p})$ and 1 height(\mathfrak{p}), and show that $\dim(R) \ge 2$.
 - (a) $R/\mathfrak{p} \cong K[X]$ so its dimension is 1. \mathfrak{p} is minimal so its height is 0. But $(x) \subseteq (x, y) \subseteq (x, y, z)$ shows that $\dim(R) \ge 2$.
 - (b) R/p ≃ Z₍₂₎[1/2] ≃ Q so dim(R/p) = 0. p has height 1 since R is a UFD; see below. But R has dimension at least 2 since one has (0) ⊆ (2) ⊆ (2, X).

(4) Let R be a domain. Show that R is a UFD if and only if every prime ideal of height one is principal.

This solution is embargoed.

(5) Does it follow from the definition that in a Noetherian ring, every prime has finite height?

No, there could be distinct chains that get longer and longer.

¹You can use the next problem if you like.

- (6) In this problem we will construct a Noetherian ring of infinite dimension. Let K be a field,
 - $S = K[X_{1,1}, X_{2,1}, X_{2,2}, X_{3,1}, X_{3,2}, X_{3,3}, \dots]$, and $W = S \setminus \bigcup_t (X_{t,1}, \dots, X_{t,t})$.
 - (a) Let A be a ring. Suppose that Max(A) is finite, $A_{\mathfrak{m}}$ is Noetherian for every $\mathfrak{m} \in Max(A)$, and every nonzero element is contained in finitely many maximal ideals. Show that A is Noetherian.
 - (b) Let $\mathfrak{p}_t = (X_{t,1}, \ldots, X_{t,t})$ for $t \ge 1$. Let I be an ideal. Show that if $I \subseteq \bigcup_{t\ge 1} \mathfrak{p}_t$, then there is² some $t \ge 1$ such that $I \subseteq \mathfrak{p}_t$.
 - (c) Show that $R := W^{-1}S$ is Noetherian and infinite dimensional.
 - (a) Let $I_1 \subseteq I_2 \subseteq I_3 \subseteq \cdots$ be an ascending chain of ideals; without loss of generality, I_1 is nonzero. By hypothesis, $V_{\max}(I_1)$ is finite, and $V_{\max}(I_i) \supseteq V_{\max}(I_{i+1})$ for every *i* by definition. A descending chain of finite sets stabilizes, so $X = V_{\max}(I_i)$ stabilizes. Then for each $\mathfrak{m} \in X$, the chain

$$(I_1)_{\mathfrak{m}} \subseteq (I_2)_{\mathfrak{m}} \subseteq (I_3)_{\mathfrak{m}} \subseteq \cdots$$

stabilizes. In particular, there is some t such that $(I_i)_{\mathfrak{m}} = (I_{i+1})_{\mathfrak{m}}$ for all $i \ge t$ and all maximal ideals containing I_{i+1} . Thus, $\operatorname{Supp}(I_{i+1}/I_i)$ contains no maximal ideals, hence is empty, so $I_i = I_{i+1}$ for all $i \ge t$; i.e., the chain stabilizes.

(b) If I = 0 this is clear, so suppose $I \neq 0$, that $I \subseteq \bigcup_{i \in \mathbb{N}} \mathfrak{p}_i$. For $s \in S$, set

$$v(s) := \{i \mid f \in \mathfrak{p}_i\}.$$

Since s involves finitely many variables, v(s) is finite for each nonzero $s \in S$. Our hypothesis translates to saying v(f) is nonempty for each $f \in I$.

We claim that for any $f, g \in I$, there is some $h \in I$ with $v(h) \subseteq v(f) \cap v(g)$. Namely, let k be larger than the first index of any variable in f or g, and t be an integer greater than the degree of f and set $h = f + x_k^t g$. Then f and $x_k^t g$ have no monomials in common (since the degrees of all the monomials in $x_k^t g$ are at least t and the degree of the monomials in f are all less than t) so none can cancel from each other. In particular, if x_ℓ divides h in T, then x_ℓ divides both f and $x_k^t g$ in T; i.e., $v(h) \subseteq v(f) \cap v(g)$ as claimed.

Thus, fixing some nonzero $f \in I$, for every $g \in I$, $v(f) \cap v(g)$ is nonempty. That means that every $g \in I$ is in some \mathfrak{p}_i for $i \in v(f)$, so $I \subseteq \bigcup_{i \in v(f)} \mathfrak{p}_i$, which is a finite union of primes. By the usual version of prime avoidance, $I \subseteq \mathfrak{p}_i$ for some *i*.

(c) Clearly R is infinite dimensional, since for any n, there is a chain of primes contained in \mathfrak{p}_n of length n, which yields a chain of primes of length n in R. To see that R is Noetherian, note first that by the previous part, any ideal of S that does not intersect W is contained in some \mathfrak{p}_t , so every ideal $W^{-1}R$ is contained in some $W^{-1}\mathfrak{p}_t$, so these are the maximal ideals of R. Now note that any element considered as a fraction has a numerator in at most finitely many \mathfrak{p}_n . Moreover, localizing at \mathfrak{p}_t yields ring isomorphic to a localization of polynomial ring in t variables over a field, which is Noetherian. Thus, by the Lemma, R is Noetherian.

²Note that this looks similar to prime avoidance, but with an infinite set of primes. For $f \in S$, let $v(f) := \{t \mid f \in \mathfrak{p}_t\}$. Show that for any $f, g \in I$, there is some $h \in I$ with $v(h) \subseteq v(f) \cup v(g)$. Then apply prime avoidance.