DEFINITION: Let R be a ring.

• A chain of primes of length n is

 $\mathfrak{p}_0 \subsetneq \mathfrak{p}_1 \subsetneq \ldots \subsetneq \mathfrak{p}_n$ with $\mathfrak{p}_i \in \operatorname{Spec}(R)$.

We may say this chain is from p_0 and/or to p_n to indicate the minimal and/or maximal elements.

- A chain of primes as above is **saturated** if for each *i*, there is no prime q such that $\mathfrak{p}_i \subsetneq \mathfrak{q} \subsetneq \mathfrak{p}_{i+1}$.
- The **dimension** of R is

 $\dim(R) := \sup\{n \ge 0 \mid \text{there is a chain of primes of length } n \text{ in } \operatorname{Spec}(R)\}.$

• The height of a prime ideal $\mathfrak{p} \in \operatorname{Spec}(R)$ is

height(\mathfrak{p}) := sup{ $n \ge 0$ | there is a chain of primes to \mathfrak{p} of length n in Spec(R)}.

• The **height** of an arbitrary proper ideal $I \subseteq R$ is

$$\operatorname{height}(I) := \inf \{\operatorname{height}(\mathfrak{p}) \mid \mathfrak{p} \in \operatorname{Min}(I) \}.$$

(1) Let K be field. Use the definition of dimension to prove the following:

(a) $\dim(K) = 0$.

(b) If R is a PID, but not a field, then $\dim(R) = 1$.

- (c) $\dim(K[X_1, \ldots, X_n]) \ge n$.
- (d) $\dim(K[X_1,\ldots,X_n]) \ge n.$
- (e) $\dim(K[X_1, X_2, X_3, \dots]) = \infty$.

(2) Let R be a ring, I an ideal, and p a prime ideal. Use the definitions to prove the following: (a) height(\mathfrak{p}) = 0 if and only if $\mathfrak{p} \in Min(R)$.

- (b) height(I) = 0 if and only if $I \subseteq \mathfrak{p}$ for some $\mathfrak{p} \in Min(R)$.
- (c) If R is a domain and $I \neq 0$, then height(I) > 0.
- (d) $\dim(R/\mathfrak{p}) = \sup\{n \ge 0 \mid \text{there is a chain of primes of length } n \text{ in } V(\mathfrak{p})\}.$
- (e) $\dim(R/I) = \sup\{n \ge 0 \mid \text{there is a chain of primes of length } n \text{ in } V(I)\}.$
- (f) If R is a domain and $I \neq 0$, and $\dim(R) < \infty$, then $\dim(R/I) < \dim(R)$.
- (g) $\dim(R) = \sup\{\dim(R/\mathfrak{p}) \mid \mathfrak{p} \in \operatorname{Min}(R)\}.$
- **(b)** dim $(R_{\mathfrak{p}})$ = height(\mathfrak{p}).
- (i) $\dim(R) = \sup\{\dim(R_{\mathfrak{m}}) \mid \mathfrak{m} \in \operatorname{Max}(R)\}.$

(j)
$$\operatorname{height}(\mathfrak{p}) + \dim(R/\mathfrak{p}) = \sup \left\{ n \ge 0 \mid \begin{array}{l} \text{there is a chain of primes of length } n \\ \operatorname{in Spec}(R) \text{ such that } \mathfrak{p}_i = \mathfrak{p} \text{ for some } i \end{array} \right.$$

(k) height(
$$\mathfrak{p}$$
) + dim $(R/\mathfrak{p}) \le \dim(R)$.

(1) height(I) + dim(R/I)
$$\leq$$
 sup $\left\{ n \geq 0 \mid \frac{\text{there is a chain of primes of length } n}{\text{in Spec}(R) \text{ such that } \mathfrak{p}_i \in \text{Min}(I) \text{ for some } i} \right\}$.

$$(1)$$
 + $\operatorname{dim}(I)$ = $\operatorname{Sup}\left(\stackrel{n}{=} \circ \right)$ in $\operatorname{Spec}(R)$ such that $\mathfrak{p}_i \in \operatorname{Min}(I)$ for

(m)
$$\operatorname{height}(I) + \dim(R/I) \le \dim(R)$$
.

- (3) Dimension vs height
 - (a) Let K be a field and R = K[X, Y, Z]/(XY, XZ). Let $\mathfrak{p} = (y, z)$. Compute dim (R/\mathfrak{p}) and height(\mathfrak{p}), and show that dim $(R) \geq 2$.
 - (b) Let $R = \mathbb{Z}_{(2)}[X]$. Let $\mathfrak{p} = (2X 1)$. Compute $\dim(R/\mathfrak{p})$ and $\operatorname{height}(\mathfrak{p})$, and show that $\dim(R) \ge 2.$

(4) Let R be a domain. Show that R is a UFD if and only if every prime ideal of height one is principal.

¹You can use the next problem if you like.

- (5) Does it follow from the definition that in a Noetherian ring, every prime has finite height?
- (6) In this problem we will construct a Noetherian ring of infinite dimension. Let K be a field,

 - $S = K[X_{1,1}, X_{2,1}, X_{2,2}, X_{3,1}, X_{3,2}, X_{3,3}, \dots]$, and $W = S \setminus \bigcup_t (X_{t,1}, \dots, X_{t,t})$. (a) Let A be a ring. Suppose that Max(A) is finite, $A_{\mathfrak{m}}$ is Noetherian for every $\mathfrak{m} \in Max(A)$, and every nonzero element is contained in finitely many maximal ideals. Show that A is Noetherian.
 - (b) Let $\mathfrak{p}_t = (X_{t,1}, \dots, X_{t,t})$ for $t \ge 1$. Let I be an ideal. Show that if $I \subseteq \bigcup_{t\ge 1} \mathfrak{p}_t$, then there is² some $t \ge 1$ such that $I \subseteq \mathfrak{p}_t$.
 - (c) Show that $R := W^{-1}S$ is Noetherian and infinite dimensional.

²Note that this looks similar to prime avoidance, but with an infinite set of primes. For $f \in S$, let $v(f) := \{t \mid f \in \mathfrak{p}_t\}$. Show that for any $f, g \in I$, there is some $h \in I$ with $v(h) \subseteq v(f) \cup v(g)$. Then apply prime avoidance.