DEFINITION: Let R be a ring.

• A chain of primes of length n is

 $\mathfrak{p}_0 \subsetneq \mathfrak{p}_1 \subsetneq \cdots \subsetneq \mathfrak{p}_n$ with $\mathfrak{p}_i \in \mathrm{Spec}(R)$.

We may say this chain is from \mathfrak{p}_0 and/or to \mathfrak{p}_n to indicate the minimal and/or maximal elements.

- A chain of primes as above is **saturated** if for each i, there is no prime q such that $\mathfrak{p}_i \subsetneq \mathfrak{q} \subsetneq \mathfrak{p}_{i+1}$.
- The **dimension** of R is

 $\dim(R) := \sup\{n \geq 0 \mid \text{there is a chain of primes of length } n \text{ in } \text{Spec}(R)\}.$

• The **height** of a prime ideal $p \in Spec(R)$ is

height(p) := sup ${n \geq 0}$ | there is a chain of primes to p of length n in Spec(R) }.

• The **height** of an arbitrary proper ideal $I \subseteq R$ is

$$
\text{height}(I) := \inf \{ \text{height}(\mathfrak{p}) \mid \mathfrak{p} \in \text{Min}(I) \}.
$$

(1) Let K be field. Use the definition of dimension to prove the following:

(a) dim $(K) = 0$.

- **(b)** If R is a PID, but not a field, then $\dim(R) = 1$.
- (c) dim $(K[X_1, ..., X_n]) \geq n$.
- (d) dim $(K[[X_1, ..., X_n]]) \geq n$.
- (e) dim $(K[X_1, X_2, X_3, \dots]) = \infty$.

(2) Let R be a ring, I an ideal, and $\mathfrak p$ a prime ideal. Use the definitions to prove the following: (a) height(p) = 0 if and only if $p \in \text{Min}(R)$.

- (b) height(I) = 0 if and only if $I \subseteq \mathfrak{p}$ for some $\mathfrak{p} \in \text{Min}(R)$.
- (c) If R is a domain and $I \neq 0$, then height(I) > 0.
- (d) $\dim(R/\mathfrak{p}) = \sup\{n \geq 0 \mid \text{there is a chain of primes of length } n \text{ in } V(\mathfrak{p})\}.$
- (e) $\dim(R/I) = \sup\{n \geq 0 \mid \text{there is a chain of primes of length } n \text{ in } V(I)\}.$
- (f) If R is a domain and $I \neq 0$, and $\dim(R) < \infty$, then $\dim(R/I) < \dim(R)$.
- (g) $\dim(R) = \sup \{ \dim(R/\mathfrak{p}) \mid \mathfrak{p} \in \text{Min}(R) \}.$
- **(h)** dim (R_p) = height(p).
- (i) dim(R) = sup{dim(R_m) | $\mathfrak{m} \in \text{Max}(R)$ }.

(j) height(
$$
\mathfrak{p}
$$
) + dim(R/\mathfrak{p}) = sup $\left\{ n \ge 0 \mid \text{ there is a chain of primes of length } n \atop \text{in } \text{Spec}(R) \text{ such that } \mathfrak{p}_i = \mathfrak{p} \text{ for some } i \right\}$

(k) height(
$$
\mathfrak{p}
$$
) + dim $(R/\mathfrak{p}) \leq dim(R)$.

(1) height(I) + dim(R/I)
$$
\leq
$$
 sup $\left\{ n \geq 0 \mid \text{ there is a chain of primes of length } n \right\}$
in $\text{Spec}(R)$ such that $n \in \text{Min}(I)$ for some *i*

$$
\text{Im}(I) \leq \sup \left\{ \int_{I}^{R} \left(\int_{I}^{R} \text{sin} S \right) \text{pc}(R) \text{ such that } \mathfrak{p}_{i} \in \text{Min}(I) \text{ for some } i \right\}
$$

.

(m) height
$$
(I)
$$
 + dim (R/I) \leq dim (R) .

- (3) Dimension vs height
	- (a) Let K be a field and $R = K[X, Y, Z]/(XY, XZ)$. Let $\mathfrak{p} = (y, z)$. Compute $\dim(R/\mathfrak{p})$ and height(\mathfrak{p}), and show that $\dim(R) \geq 2$.
	- (b) Let $R = \mathbb{Z}_{(2)}[X]$. Let $\mathfrak{p} = (2X 1)$. Compute $\dim(R/\mathfrak{p})$ and height(p), and show that $\dim(R) \geq 2$.
- (4) Let R be a domain. Show that R is a UFD if and only if every prime ideal of height one is principal.

¹You can use the next problem if you like.

- (5) Does it follow from the definition that in a Noetherian ring, every prime has finite height?
- (6) In this problem we will construct a Noetherian ring of infinite dimension. Let K be a field,
	- $S = K[X_{1,1}, X_{2,1}, X_{2,2}, X_{3,1}, X_{3,2}, X_{3,3}, \dots]$, and $W = S \setminus \bigcup_t (X_{t,1}, \dots, X_{t,t}).$
	- (a) Let A be a ring. Suppose that $Max(A)$ is finite, A_m is Noetherian for every $m \in Max(A)$, and every nonzero element is contained in finitely many maximal ideals. Show that A is Noetherian.
	- (b) Let $\mathfrak{p}_t = (X_{t,1}, \ldots, X_{t,t})$ for $t \geq 1$. Let I be an ideal. Show that if $I \subseteq \bigcup_{t \geq 1} \mathfrak{p}_t$, then there is² some $t \geq 1$ such that $I \subseteq \mathfrak{p}_t$.
	- (c) Show that $R := W^{-1}S$ is Noetherian and infinite dimensional.

²Note that this looks similar to prime avoidance, but with an infinite set of primes. For $f \in S$, let $v(f) := \{t \mid f \in \mathfrak{p}_t\}$. Show that for any $f, g \in I$, there is some $h \in I$ with $v(h) \subseteq v(f) \cup v(g)$. Then apply prime avoidance.