
§6.28: UNIQUENESS OF PRIMARY DECOMPOSITIONS

DEFINITION: A minimal primary decomposition of an ideal I is a primary decomposition

I = Q1 ∩ · · · ∩Qn

such that Qi 6⊇
⋂
j 6=iQj , and

√
Qi 6=

√
Qj for i 6= j.

THEOREM (FIRST UNIQUENESS THEOREM FOR PRIMARY DECOMPOSITION): Let R be a
Noetherian ring and I an ideal. Let

I = Q1 ∩ · · · ∩Qn

be a minimal primary decomposition of I . Then

{
√
Q1, . . . ,

√
Qn} = AssR(R/I).

In particular, the set of primes occurring as the radicals of the primary components are uniquely
determined.

THEOREM (SECOND UNIQUENESS THEOREM FOR PRIMARY DECOMPOSITION): Let R be a
Noetherian ring and I an ideal. Let

I = Q1 ∩ · · · ∩Qn

be a minimal primary decomposition of I . Suppose that p =
√
Qi is a minimal prime of I .

Then Qi = IRp ∩ R. In particular, the primary components corresponding to the minimal
primes are uniquely determined.

LEMMA: Let I1, . . . , It be ideals. Then
(1) for any multiplicatively closed set W , W−1(I1 ∩ · · · ∩ It) = W−1I1 ∩ · · · ∩W−1It.
(2) AssR

(
R/
⋂t
i=1 Ii

)
⊆
⋃t
i=1 AssR(R/Ii).

(1)(1) Uniqueness theorems:
(a)(a) Let K be a field, R = K[X, Y ] a polynomial ring, and I = (X2, XY ). Verify1 that

I = (X) ∩ (X2, Y ) = (X) ∩ (X2, XY, Y 2) gives two different minimal primary
decompositions of I .

(b)(b) In the previous part, which aspects of the decomposition are the same, and which are
different. Compare with the uniqueness theorems.

(c)(c) Use the uniqueness theorems to explain why, for n ∈ Z with prime factorization
n = ±pe11 · · · pemm , the only2 minimal primary decomposition of (n) is

(n) = (pe11 ) ∩ · · · ∩ (pemm ).

(a)(a) (X) is prime, hence primary. (X2, Y ) and (X2, XY, Y 2) both have radical (X, Y ),
which is maximal, so they are primary. In each case we have different radicals and
neither component contained in the other.

1You can take for granted that in each case the intersection is I , but explain why the ideals are primary and the
minimality hypotheses hold.

2We don’t care about the order.



(b)(b) In both cases the radicals of the primes are the same, and the (X)-component are
the same.

(c)(c) For any such decomposition, the prime ideals occurring are the same, since each
prime is minimal, the the components are the same.

(2)(2) Minimal primary decompositions: Let R be a Noetherian ring.
(a)(a) Use the Lemma to explain why a finite intersection of p-primary ideals is p-primary.
(b)(b) Explain how to turn a general I = Q1∩· · ·∩Qm primary decomposition into a minimal

primary decomposition.

(a)(a) Because p-primary is equivalent to AssR(R/I) = {p}.
(b)(b) Intersect all of the Qi’s with the same radical to get a decomposition satisfying the

second condition. Then remove any component that is contained in the intersection
of the others to satisfy the first condition.

(3)(3) Proof of Second Uniqueness Theorem:
(a)(a) Use the definition of primary to show that if Q is p-primary, then QRp ∩R = Q.
(b)(b) Show3 that if Q is q-primary and q 6⊆ p, then QRp = Rp.
(c)(c) Let R be Noetherian and I = Q1∩· · ·∩Qn be a minimal primary decomposition, and

p =
√
Qi a minimal prime of I . Use the Lemma to show that IRp = QiRp.

(d)(d) Complete the proof.

(a)(a) Clearly Q ⊆ QRp ∩ R. Let r ∈ QRp ∩ R, so there is some q ∈ Q and w /∈ p
such that q

w
= r

1
∈ Rp. This means there is some v /∈ p such that v(q − rw) = 0

in R; i.e., vwr = qv, so in particular there is some u /∈ p such that ur ∈ Q. By
definition of primary, r ∈ Q.

(b)(b) We have Supp(R/Q) = V (Q) = V (q). If p 6⊆ q, then p /∈ V (q), so (R/Q)p = 0
and Rp = QRp.

(c)(c) We have IRp = Q1Rp ∩ · · · ∩QnRp. By the previous part, each term on the right
is all of Rq except QiRp.

(d)(d) Follows from part (1).

(4) Proof of First Uniqueness Theorem: Let R be Noetherian and I = Q1 ∩ · · · ∩ Qn be a
minimal primary decomposition.
(a) Use the Lemma to prove that AssR(R/I) ⊆ {

√
Q1, . . . ,

√
Qn}.

(b) Set Ji =
⋂
j 6=iQj . Explain why it suffices to show that AssR(Ji/I) = {

√
Qi} to

establish the other containment.
(c) Let q be an associated prime of Ji/I and r ∈ R such that r ∈ Ji/I is a witness (and

in particular, nonzero). Show that Qi ⊆ q and deduce that
√
Qi ⊆ q.

(d) Use the definition of primary to show that q ⊆
√
Qi, and conclude the proof.

(a) Yes, it is immediate from the lemma.
(b) Because Ji/I ⊆ R/I so AssR(Ji/I) ⊆ AssR(R/I).

3One possibility is to consider the support of R/Q.



(c) We have Qir ⊆ Qi ∩ Ji ⊆ I , so Qi ⊆ annR(r) = q. Since
√
Qi is the unique

minimal prime of Qi and q is a prime containing Qi, we have q ⊇
√
Qi.

(d) Let q ∈ q, so qr ∈ I ⊆ Qi. Since r 6= 0, we have r /∈ Qi, so by definition of
primary, q ∈

√
Qi. Thus q ⊆

√
Qi. This shows that

√
Qi = q is an associated

prime of Ji/I and hence of R/I .

(5) Prove the Lemma.

(6) Let R be a Noetherian ring, and I be an ideal. Consider a collection of minimal primary
decompositions of I:

I = q1,α ∩ · · · ∩ qs,α, α ∈ Λ

where, for each α,
√
qi,α = pi.

(a) Suppose that pj is not contained in any other associated prime of I , and letW = Rr
⋃
i 6=j pi.

Find some minimal primary decompositions of I(W−1R) ∩R.
(b) Show (by induction on s) that if we take components q1,α1 , . . . , qs,αs from different

primary decompositions of I , that we can put them together to get a primary decom-
position of I; namely I = q1,α1 ∩ · · · ∩ qs,αs .


