DEFINITION: A **minimal primary decomposition** of an ideal I is a primary decomposition $I = Q_1 \cap \cdots \cap Q_n$

such that $Q_i \not\supseteq \bigcap_{j \neq i} Q_j$, and $\sqrt{Q_i} \neq \sqrt{Q_j}$ for $i \neq j$.

THEOREM (FIRST UNIQUENESS THEOREM FOR PRIMARY DECOMPOSITION): Let R be a Noetherian ring and I an ideal. Let

$$
I = Q_1 \cap \cdots \cap Q_n
$$

be a minimal primary decomposition of I. Then

$$
\{\sqrt{Q_1},\ldots,\sqrt{Q_n}\}=\operatorname{Ass}_R(R/I).
$$

In particular, the set of primes occurring as the radicals of the primary components are uniquely determined.

THEOREM (SECOND UNIQUENESS THEOREM FOR PRIMARY DECOMPOSITION): Let R be a Noetherian ring and I an ideal. Let

$$
I=Q_1\cap\cdots\cap Q_n
$$

be a minimal primary decomposition of I . Suppose that $p =$ √ $\overline{Q_i}$ is a *minimal* prime of *I*. Then $Q_i = IR_p \cap R$. In particular, the primary components corresponding to the minimal primes are uniquely determined.

LEMMA: Let I_1, \ldots, I_t be ideals. Then

(1) for any multiplicatively closed set W , $W^{-1}(I_1 \cap \cdots \cap I_t) = W^{-1}I_1 \cap \cdots \cap W^{-1}I_t$. (2) $\text{Ass}_{R}\left(R/\bigcap_{i=1}^{t} I_{i}\right) \subseteq \bigcup_{i=1}^{t} \text{Ass}_{R}(R/I_{i}).$

- (1) Uniqueness theorems:
	- (a) Let K be a field, $R = K[X, Y]$ a polynomial ring, and $I = (X^2, XY)$. Verify¹ that $I = (X) \cap (X^2, Y) = (X) \cap (X^2, XY, Y^2)$ gives two different minimal primary decompositions of I.
	- (b) In the previous part, which aspects of the decomposition are the same, and which are different. Compare with the uniqueness theorems.
	- (c) Use the uniqueness theorems to explain why, for $n \in \mathbb{Z}$ with prime factorization $n = \pm p_1^{e_1} \cdots p_m^{e_m}$, the *only*² minimal primary decomposition of (n) is

$$
(n)=(p_1^{e_1})\cap\cdots\cap(p_m^{e_m}).
$$

(a) (X) is prime, hence primary. (X^2, Y) and (X^2, XY, Y^2) both have radical (X, Y) , which is maximal, so they are primary. In each case we have different radicals and neither component contained in the other.

¹You can take for granted that in each case the intersection is I , but explain why the ideals are primary and the minimality hypotheses hold.

 2 We don't care about the order.

- (b) In both cases the radicals of the primes are the same, and the (X) -component are the same.
- (c) For any such decomposition, the prime ideals occurring are the same, since each prime is minimal, the the components are the same.
- (2) Minimal primary decompositions: Let R be a Noetherian ring.
	- (a) Use the Lemma to explain why a finite intersection of p-primary ideals is p-primary.
	- (b) Explain how to turn a general $I = Q_1 \cap \cdots \cap Q_m$ primary decomposition into a minimal primary decomposition.
		- (a) Because p-primary is equivalent to $\text{Ass}_{R}(R/I) = \{\mathfrak{p}\}.$
		- (b) Intersect all of the Q_i 's with the same radical to get a decomposition satisfying the second condition. Then remove any component that is contained in the intersection of the others to satisfy the first condition.
- (3) Proof of Second Uniqueness Theorem:
	- (a) Use the definition of primary to show that if Q is p-primary, then $QR_p \cap R = Q$.
	- **(b)** Show³ that if Q is q-primary and $q \nsubseteq p$, then $QR_p = R_p$.
	- (c) Let R be Noetherian and $I = Q_1 \cap \cdots \cap Q_n$ be a minimal primary decomposition, and $\mathfrak{p} = \sqrt{Q_i}$ a minimal prime of *I*. Use the Lemma to show that $IR_{\mathfrak{p}} = Q_i R_{\mathfrak{p}}$.
	- (d) Complete the proof.
		- (a) Clearly $Q \subseteq QR_p \cap R$. Let $r \in QR_p \cap R$, so there is some $q \in Q$ and $w \notin \mathfrak{p}$ such that $\frac{q}{w} = \frac{r}{1}$ $\frac{r}{1} \in R_{\mathfrak{p}}$. This means there is some $v \notin \mathfrak{p}$ such that $v(q - rw) = 0$ in R; i.e., $vwr = qv$, so in particular there is some $u \notin \mathfrak{p}$ such that $ur \in Q$. By definition of primary, $r \in Q$.
		- (b) We have $\text{Supp}(R/Q) = V(Q) = V(q)$. If $\mathfrak{p} \nsubseteq q$, then $\mathfrak{p} \notin V(q)$, so $(R/Q)_{\mathfrak{p}} = 0$ and $R_{\mathfrak{p}} = QR_{\mathfrak{p}}$.
		- (c) We have $IR_p = Q_1R_p \cap \cdots \cap Q_nR_p$. By the previous part, each term on the right is all of $R_{\mathfrak{q}}$ except $Q_i R_{\mathfrak{p}}$.
		- (d) Follows from part (1).
- (4) Proof of First Uniqueness Theorem: Let R be Noetherian and $I = Q_1 \cap \cdots \cap Q_n$ be a minimal primary decomposition.
	- minimal primary decomposition.
(a) Use the Lemma to prove that $\text{Ass}_R(R/I) \subseteq {\{\sqrt{Q_1}, \ldots, \sqrt{Q_n}\}}$.
	- (b) Set $J_i = \bigcap_{j \neq i} Q_j$. Explain why it suffices to show that $\text{Ass}_R(J_i/I) = \{$ √ $\overline{Q_i}\}$ to establish the other containment.
	- (c) Let q be an associated prime of J_i/I and $r \in R$ such that $\overline{r} \in J_i/I$ is a witness (and Let q be an associated prime of J_i/I and $T \in R$ such that $T \in J_i/I$
in particular, nonzero). Show that $Q_i \subseteq q$ and deduce that $\sqrt{Q_i} \subseteq q$.
	- (d) Use the definition of primary to show that $\mathfrak{q} \subseteq \sqrt{Q_i}$, and conclude the proof.
		- (a) Yes, it is immediate from the lemma.
		- (b) Because $J_i/I \subseteq R/I$ so $\text{Ass}_R(J_i/I) \subseteq \text{Ass}_R(R/I)$.

³One possibility is to consider the support of R/Q .

- (c) We have $Q_i r \subseteq Q_i \cap J_i \subseteq I$, so $Q_i \subseteq \text{ann}_R(\overline{r}) = \mathfrak{q}$. Since $\sqrt{Q_i}$ is the unique minimal prime of Q_i and q is a prime containing Q_i , we have $\mathfrak{q} \supseteq \sqrt{Q_i}$.
- (d) Let $q \in \mathfrak{q}$, so $qr \in I \subseteq Q_i$. Since $\overline{r} \neq 0$, we have $r \notin Q_i$, so by definition of Let $q \in \mathfrak{q}$, so $qr \in I \subseteq Q_i$. Since $r \neq 0$, we have $r \notin Q_i$, so by definition of primary, $q \in \sqrt{Q_i}$. Thus $\mathfrak{q} \subseteq \sqrt{Q_i}$. This shows that $\sqrt{Q_i} = \mathfrak{q}$ is an associated prime of J_i/I and hence of R/I .
- (5) Prove the Lemma.
- (6) Let R be a Noetherian ring, and I be an ideal. Consider a collection of minimal primary decompositions of I:

$$
I = \mathfrak{q}_{1,\alpha} \cap \cdots \cap \mathfrak{q}_{s,\alpha}, \quad \alpha \in \Lambda
$$

where, for each α , $\sqrt{\mathfrak{q}_{i,\alpha}} = \mathfrak{p}_{i}$.

- (a) Suppose that \mathfrak{p}_j is not contained in any other associated prime of I, and let $W = R \setminus \bigcup_{i \neq j} \mathfrak{p}_i$. Find some minimal primary decompositions of $I(W^{-1}R) \cap R$.
- (b) Show (by induction on s) that if we take components $q_{1,\alpha_1}, \ldots, q_{s,\alpha_s}$ from different primary decompositions of I, that we can put them together to get a primary decomposition of *I*; namely $I = \mathfrak{q}_{1,\alpha_1} \cap \cdots \cap \mathfrak{q}_{s,\alpha_s}$.