
§6.28: UNIQUENESS OF PRIMARY DECOMPOSITIONS

DEFINITION: A minimal primary decomposition of an ideal I is a primary decomposition

I = Q1 ∩ · · · ∩Qn

such that Qi 6⊇
⋂
j 6=iQj , and

√
Qi 6=

√
Qj for i 6= j.

THEOREM (FIRST UNIQUENESS THEOREM FOR PRIMARY DECOMPOSITION): Let R be a
Noetherian ring and I an ideal. Let

I = Q1 ∩ · · · ∩Qn

be a minimal primary decomposition of I . Then

{
√
Q1, . . . ,

√
Qn} = AssR(R/I).

In particular, the set of primes occurring as the radicals of the primary components are uniquely
determined.

THEOREM (SECOND UNIQUENESS THEOREM FOR PRIMARY DECOMPOSITION): Let R be a
Noetherian ring and I an ideal. Let

I = Q1 ∩ · · · ∩Qn

be a minimal primary decomposition of I . Suppose that p =
√
Qi is a minimal prime of I .

Then Qi = IRp ∩ R. In particular, the primary components corresponding to the minimal
primes are uniquely determined.

LEMMA: Let I1, . . . , It be ideals. Then
(1) for any multiplicatively closed set W , W−1(I1 ∩ · · · ∩ It) = W−1I1 ∩ · · · ∩W−1It.
(2) AssR

(
R/
⋂t
i=1 Ii

)
⊆
⋃t
i=1 AssR(R/Ii).

(1)(1) Uniqueness theorems:
(a)(a) Let K be a field, R = K[X, Y ] a polynomial ring, and I = (X2, XY ). Verify1 that

I = (X) ∩ (X2, Y ) = (X) ∩ (X2, XY, Y 2) gives two different minimal primary
decompositions of I .

(b)(b) In the previous part, which aspects of the decomposition are the same, and which are
different. Compare with the uniqueness theorems.

(c)(c) Use the uniqueness theorems to explain why, for n ∈ Z with prime factorization
n = ±pe11 · · · pemm , the only2 minimal primary decomposition of (n) is

(n) = (pe11 ) ∩ · · · ∩ (pemm ).

(2)(2) Minimal primary decompositions: Let R be a Noetherian ring.
(a)(a) Use the Lemma to explain why a finite intersection of p-primary ideals is p-primary.
(b)(b) Explain how to turn a general I = Q1∩· · ·∩Qm primary decomposition into a minimal

primary decomposition.
1You can take for granted that in each case the intersection is I , but explain why the ideals are primary and the
minimality hypotheses hold.

2We don’t care about the order.



(3)(3) Proof of Second Uniqueness Theorem:
(a)(a) Use the definition of primary to show that if Q is p-primary, then QRp ∩R = Q.
(b)(b) Show3 that if Q is q-primary and q 6⊆ p, then QRp = Rp.
(c)(c) Let R be Noetherian and I = Q1∩· · ·∩Qn be a minimal primary decomposition, and

p =
√
Qi a minimal prime of I . Use the Lemma to show that IRp = QiRp.

(d)(d) Complete the proof.

(4) Proof of First Uniqueness Theorem: Let R be Noetherian and I = Q1 ∩ · · · ∩ Qn be a
minimal primary decomposition.
(a) Use the Lemma to prove that AssR(R/I) ⊆ {

√
Q1, . . . ,

√
Qn}.

(b) Set Ji =
⋂
j 6=iQj . Explain why it suffices to show that AssR(Ji/I) = {

√
Qi} to

establish the other containment.
(c) Let q be an associated prime of Ji/I and r ∈ R such that r ∈ Ji/I is a witness (and

in particular, nonzero). Show that Qi ⊆ q and deduce that
√
Qi ⊆ q.

(d) Use the definition of primary to show that q ⊆
√
Qi, and conclude the proof.

(5) Prove the Lemma.

(6) Let R be a Noetherian ring, and I be an ideal. Consider a collection of minimal primary
decompositions of I:

I = q1,α ∩ · · · ∩ qs,α, α ∈ Λ

where, for each α,
√
qi,α = pi.

(a) Suppose that pj is not contained in any other associated prime of I , and letW = Rr
⋃
i 6=j pi.

Find some minimal primary decompositions of I(W−1R) ∩R.
(b) Show (by induction on s) that if we take components q1,α1 , . . . , qs,αs from different

primary decompositions of I , that we can put them together to get a primary decom-
position of I; namely I = q1,α1 ∩ · · · ∩ qs,αs .

3One possibility is to consider the support of R/Q.


