
§6.27: PRIMARY IDEALS

DEFINITION: A proper ideal I is primary if rs ∈ I implies r ∈
√
I or s ∈ I . We say that I is

p-primary if it is primary and
√
I = p.

LEMMA: Let R be a Noetherian ring and I an ideal. The following are equivalent:
(i) I is primary;

(ii) Every zerodivisor on R/I is nilpotent;
(iii) AssR(R/I) is a singleton.

DEFINITION: A primary decomposition of an ideal I is an expression of the form

I = Q1 ∩ · · ·Qn

where each Qi is a primary ideal.

DEFINITION: A proper ideal I is irreducible if I = J1 ∩ J2 for some ideals J1, J2 implies
I = J1 or I = J2.

THEOREM (EXISTENCE OF PRIMARY DECOMPOSITION): Let R be a Noetherian ring.
(1) Every irreducible ideal I is primary.
(2) Every ideal can be written as a finite intersection of irreducible ideals.

Hence, every ideal can be written as a finite intersection of primary ideals.

(1)(1) Primary ideals
(a)(a) Use the definition to show that a prime ideal is primary.
(b)(b) Use the definition to show that the radical of a primary ideal is prime.
(c)(c) Use the definition to show that for the ideal I = (X2, XY ) in R = Q[X, Y ],

√
I is

prime but I is not primary.
(d)(d) Use the definition and part (b) above to show that if R is a UFD, then a proper principal

ideal (f) is primary if and only if it is not generated1 by a power of a prime element.
(e)(e) Use the Lemma to show that if

√
I = m is a maximal ideal, then I is m-primary.

(a)(a) A prime ideal is radical in particular, so if Q is prime and rs ∈ Q and r /∈
√
Q =

Q, then s ∈ Q.
(b)(b) Let Q be primary. Suppose that rs ∈

√
Q. Then for some n, rnsn = (rs)n ∈ Q

so either rn ∈
√
Q (whence r ∈

√
Q) or sn ∈ Q (whence s ∈

√
Q).

(c)(c) We have computed
√
I = (X) earlier, so

√
I is prime. This ideal is not primary

since XY ∈ I but X /∈ I and Y /∈
√
I .

(d)(d) Suppose that (f) = (rn) for some irreducible r. If xy ∈ (f), then rn|(xy), so
either r|x (whence x ∈

√
(f)) or rn|y (whence y ∈ (f)). Conversely, suppose

that f admits a factorization f = gh with g, h coprime. Then gh ∈ (f), but
g /∈

√
(f) and h /∈ (f).

1Note that if (f) is not generated by a power of a prime element, then f has nonassociate irreducible factors.



(e)(e) If
√
I = m, then V (I) = {m} and since ∅ 6= AssR(R/I) ⊆ V (I), we must have

AssR(R/I) = {m}.

(2)(2) Primary decompositions
(a)(a) Let n be an integer. Show that if n = ±pe11 · · · pemm is the prime factorization of n, then

(n) = (pe11 ) ∩ · · · ∩ (pemm )

is a primary decomposition of (n) in Z.
(b)(b) Let R be a Noetherian ring and I be a radical ideal. Give a recipe for a primary

decomposition of I in terms of other named things pertaining to I .

(a)(a) The equality is clear, and each (pmi
i ) is primary by above.

(b)(b) I =
⋂

p∈Min(I) p.

(3)(3) Prove2 the Lemma.

The equivalence between (i) and (ii) is straightforward. For the (ii)⇔(iii), recall that the
set elements of R that are zerodivisors modulo I is the union of the associated primes of
R/I and the set of elements that are nilpotent modulo I is the intersection of minimal
primes of I . Every minimal prime of I is associated. Thus, if every zerodivisor is
nilpotent, then there must be one associated prime (because the union of two distinct
sets is always larger than the intersection. Conversely, if there is only one associated
prime, the union is the intersection and (ii) holds.

(4)(4) Proof of Existence of Primary Decompositions:
(a)(a) Prove3 part (2) of the Theorem.
(b)(b) Suppose that xy ∈ Q with x /∈ Q and y /∈

√
Q. Explain why the there is some n ≥ 1

such that (Q : yn) = (Q : yn+1).
(c)(c) Show that Q = (Q, x) ∩ (Q, yn) and deduce part (1) of the Theorem.

(a)(a) Consider the collection of ideals that are not finite intersections of irreducible
ideals. If one exists, by Noetherianity, there is a maximal element I . Such I is
necessarily reducible, so I = J1 ∩ J2, with J1, J2 % I . By maximality, J1, J2 are
finite intersections of irreducible ideals. Substituting in those expressions gives an
expression for I as a finite intersection of irreducible ideals.

(b)(b) For each n, we have (Q : yn) ⊆ (Q : yn+1) since fyn ∈ Q implies fyn+1 =
yfyn ∈ Q. Thus, these ideals form an ascending chain, which must stabilize.

(c)(c) Clearly Q ⊆ (Q, x) ∩ (Q, yn). Write f = q + ax = q′ + byn with q, q′ ∈ Q. Then
yf = qy+axy ∈ Q, and yf = q′y+byn+1, so byn+1 ∈ Q. Thus b ∈ (Q : yn+1) =
(Q : yn), so byn ∈ Q, but then f ∈ Q. We have shown that if Q is not primary,
then it is reducible.

2Hint: For (ii)⇔(iii), recall that the set elements of R that are zerodivisors modulo I is the union of the associated
primes of R/I and the set of elements that are nilpotent modulo I is the intersection of minimal primes of I .

3Imitate the proof of finiteness of minimal primes.



(5) More examples: Let K be a field.
(a) Show that (X2, XY, Y 2) ⊆ K[X, Y ] is primary but not irreducible.
(b) Show that (X2, XY, Y 3) is primary, but not a power of a prime.
(c) Show that (X2, XY )2 ⊆ K[X2, XY, Y 2] is a power of a prime but not primary.

(a) The radical of (X2, XY, Y 2) is (X, Y ), which is maximal, so this is primary. How-
ever, (X2, XY, Y 2) = (X2, Y ) ∩ (X, Y 2).

(b) As above, the radical is (X, Y ). Thus, if it is a power of a prime, that must be
(X, Y ), since the radical of a power of an ideal agree with the radical of the same
ideal. Note that (X, Y )2 = (X2, XY, Y 2) % (X2, XY, Y 3) % (X, Y )3, so this
cannot be a power of (X, Y ).

(c) Show that (X2, XY )2 ⊆ K[X2, XY, Y 2] is a power of a prime but not primary.

(6) Let R be a Noetherian ring and p a prime ideal. Show that there is an order-preserving
bijection

{p-primary ideals of R} ↔ {ideals of (Rp, pRp) with radical pRp}.

(7) Let R be a Noetherian ring. Show that I is irreducible if and only if it is primary (with

radical p) and
IRp : pRp

IRp

is a one-dimensional Rp/pRp-vectorspace.


