LEMMA: Let R be a ring, and $N \subseteq M$ be modules. Then $\operatorname{Ass}_R(N) \subseteq \operatorname{Ass}_R(M) \subseteq \operatorname{Ass}_R(N) \cup \operatorname{Ass}_R(M/N).$

EXISTENCE OF PRIME FILTRATIONS: Let R be a Noetherian ring and M be a finitely generated module. Then there exists a finite chain of submodules

 $M = M_t \supsetneq M_{t-1} \supsetneq \cdots \supsetneq M_1 \supsetneq M_0 = 0$

such that for each i = 1, ..., t, there is some $\mathfrak{p}_i \in \operatorname{Spec}(R)$ such that $M_i/M_{i-1} \cong R/\mathfrak{p}_i$. Such a chain of submodules is called a **prime filtration** of M.

COROLLARY 1: Let R be a Noetherian ring and M be a finitely generated module. Then for any prime filtration of M, $Ass_R(M)$ is a subset of the prime factors that occur in the filtration. In particular, $Ass_R(M)$ is finite.

PRIME AVOIDANCE: Let R be a ring, J an ideal, and $I_1, I_2, I_3, \ldots, I_t$ a finite collection of ideals with I_i prime for i > 2 (that is, *at most* two I_i are not prime). If $J \not\subseteq I_i$ for all i, then $J \not\subseteq \bigcup_i I_i$.

COROLLARY 2: Let R be a Noetherian ring, M a finitely generated module, and I an ideal. If every element of I is a zerodivisor on M, then there is some nonzero $m \in M$ such that Im = 0.

- (1) Let R = K[X, Y] and $M = R/(X^2Y, XY^2)$.
 - (a) Verify that $0 \subseteq Rxy \subseteq Rx \subseteq M$ is a prime filtration of M.
 - (b) In an earlier problem, we more or less showed that $\{(x), (y), (x, y)\} \subseteq Ass_R(M)$. Use Corollary 1 to deduce that this is an equality.
- (2) Proving some Corollaries:
 - (a) Show that Corollary 1 follows from the Lemma (and Existence of Prime Filtrations).
 - **(b)** Write the contrapositive of the conclusion of Prime Avoidance.
 - (c) Show that Corollary 2 follows from Prime Avoidance and Corollary 1.
- (3) Proof of Existence of Prime Filtrations: Let R be a Noetherian ring and M a finitely generated R-module.
 - (a) If $M \neq 0$, explain why you can always choose $M \supseteq M_1$ with $M_1 \cong R/\mathfrak{p}$ for some prime \mathfrak{p} .
 - (b) If $M \neq M_1$, explain why¹ you can always choose $M \supseteq M_2 \supseteq M_1$ with $M_2/M_1 \cong R/\mathfrak{p}$ for some prime \mathfrak{p} .
 - (c) If $M \neq M_{i-1}$ and you already have M_1, \ldots, M_{i-1} , explain why you can always choose $M \supseteq M_i \supseteq M_{i-1}$ with $M_i/M_{i-1} \cong R/\mathfrak{p}$ for some prime \mathfrak{p} .
 - (d) Explain why this process has to stop, and if it stops at i = t, we must have $M_t = M$.

¹Hint: Consider M/M_1 and go back to the previous step.

(4) Lemma 1:

- (a) Let K be a field and R = K[X]. Explain why
 - $\operatorname{Ass}_R(R) = \{(0)\}$
 - $(X) \cong R$, so $Ass_R((X)) = \{(0)\},\$
 - $\operatorname{Ass}_R(R/(X)) = \{(X)\}.$
 - Does this contradict the Lemma?
- **(b)** Show that $\operatorname{Ass}_R(N) \subseteq \operatorname{Ass}_R(M)$.
- (c) Suppose that $\mathfrak{p} \in \operatorname{Ass}_R(M) \setminus \operatorname{Ass}_R(N)$ with witness m. Show² that $Rm \cap N = 0$, so the map $Rm \to M/N$ is injective. Deduce that $\mathfrak{p} \in \operatorname{Ass}_R(M/N)$ and complete the proof.
- (5) $Prove^3$ the prime avoidance lemma.
- (6) Let K be a field and $R = K[X^2, XY, Y^2] \subseteq K[X, Y]$.
 - (a) Mark all⁴ of the points in the plane corresponding to exponent vectors of elements of R.
 - (b) Is $I = (X^2)$ a prime ideal? Is $J = (X^2, XY)$?
 - (c) Mark all of the points in the plane corresponding to exponent vectors of elements of $(X^2) \subseteq R$.
 - (d) Find and illustrate a prime filtration of R/I. Compute $Ass_R(R/I)$.
 - (e) Find and illustrate a prime filtration of R/J^2 . Compute $Ass_R(R/J^2)$.
- (7) More facts about associated primes: Let R be a Noetherian ring.
 - (a) Let $I \subseteq J$ be ideals. Show that I = J if and only if $IR_{\mathfrak{p}} = JR_{\mathfrak{p}}$ for all $\mathfrak{p} \in Ass_R(R/I)$.
 - (b) Let I, J be ideals. Show that $I \subseteq J$ if and only if $IR_{\mathfrak{p}} \subseteq JR_{\mathfrak{p}}$ for all $\mathfrak{p} \in \operatorname{Ass}_{R}(R/J)$.
 - (c) Let r be a nonzerodivisor. Show that $\operatorname{Ass}_R(R/r^n) = \operatorname{Ass}_R(R/r)$ for all $n \ge 1$.

²Note that $Rm \cong R/\mathfrak{p}$ so every nonzero element has annihilator \mathfrak{p} .

³By induction, you can find elements $a_i \in J \setminus \bigcup_{j \neq i} I_j$. Now consider $x = a_n + a_1 \cdots a_{n-1}$.

⁴Well, enough to get the pattern at least...