DEFINITION: Let R be a ring and M be a module. A prime ideal \mathfrak{p} of R is an **associated prime** of M if $\mathfrak{p} = \operatorname{ann}_R(m)$ for some $m \in M$. The element m is called a **witness** for the associated prime \mathfrak{p} . We write $\operatorname{Ass}_R(M)$ for the set of associated primes of a module.

LEMMA: Let R be a Noetherian ring and M be a module. For any nonzero element $m \in M$, the ideal $\operatorname{ann}_R(m)$ is contained in an associated prime of M. In particular, if $M \neq 0$, then M has an associated prime.

DEFINITION: Let R be a ring and M be an R-module. We say that an element $r \in R$ is a **zerodivisor** on M if there is some $m \in M \setminus 0$ such that rm = 0.

PROPOSITION: Let R be a Noetherian ring and M an R-module. The set of zerodivisors on M is the union of the associated primes of M.

THEOREM: Let R be a Noetherian ring, W be a multiplicatively closed set, and M be a module. Then

$$\operatorname{Ass}_{W^{-1}R}(W^{-1}M) = \{W^{-1}\mathfrak{p} \mid \mathfrak{p} \in \operatorname{Ass}_R(M), \mathfrak{p} \cap W = \varnothing\}.$$

COROLLARY: Let R be a Noetherian ring and I be an ideal. Then $Min(I) \subseteq Ass_R(R/I)$.

- (1) Proof of Lemma and Proposition: Let R be a Noetherian ring and M be a nonzero module.
 - (a) Let $S = \{ \operatorname{ann}_R(m) \mid m \in M \setminus 0 \}$. Explain why S has a maximal element J.
 - (b) Let $J = \operatorname{ann}_R(m)$ and suppose that $rs \in J$ but $s \notin J$. Explain why $J = \operatorname{ann}_R(sm)$.
 - (c) Conclude the proof of the Lemma.
 - (d) Deduce the Proposition from the Lemma.
 - (e) What does the Proposition say in the special case when M = R?
 - (a) Because this is a nonempty collection of ideals in a Noetherian ring.
 - (b) First, $\operatorname{ann}_R(sm) \supseteq \operatorname{ann}_R(m)$ since rm = 0 implies rsm = 0. Since $s \notin J$, $\operatorname{ann}_R(sm) \neq R$, so by maximality we have equality.
 - (c) Suppose $s \notin J$ and $rs \in J$. Then rsm = 0 implies that $r \in \operatorname{ann}_R(sm) = J$. Thus J is prime. Since any element of S is contained in a maximal element, the claim follows.
 - (d) If r is a zerodivisor on M, then r is contained in some ideal of S, and then it is contained in an associated prime. Conversely, any element in an associated prime is a zerodivisor on M by definition.
 - (e) The zerodivisors in R are the elements in some associated prime.
- (2) Working with associated primes.
 - (a) Let R be a domain and M be a torsionfree module. Show that $Ass_R(M) = \{(0)\}$.
 - (b) Let R be a ring and p be a prime ideal. Show that for any nonzero element $\overline{r} \in R/\mathfrak{p}$ that $\operatorname{ann}_R(\overline{r}) = \mathfrak{p}$ and use the definition to deduce that $\operatorname{Ass}_R(R/\mathfrak{p}) = {\mathfrak{p}}.$

- (c) Let K be a field and $R = K[X, Y]/(X^2Y, XY^2)$. Use¹ the definition to show that (x, y), (x), and (y) are associated primes of R.
- (d) Let M be a module. Explain why $\mathfrak{p} \in \operatorname{Ass}_R(M)$ if and only if there is an injective R-module homomorphism $R/\mathfrak{p} \hookrightarrow M$.
 - (a) By definition, any nonzero element has annihilator zero.
 - (b) Clearly p ⊆ ann_R(r̄). Let r be a representative of r̄; we have r ∉ p. The annihilator of r̄ ∈ R/p is the set of s ∈ R such that sr ∈ p. By definition of prime, s ∈ p, so ann_R(r̄) ⊆ p and equality holds.
 - (c) Since $x \cdot xy = x^2y = 0$ and $y \cdot xy = xy^2$, the annihilator of xy contains (x, y); any element not in (x, y) has some/every representative with a nonzero constant term, and hence does not kill xy. Thus $\operatorname{ann}_R(xy) = (x, y)$.
 - We claim that $\operatorname{ann}_R(y^2) = (x)$. Indeed, $x \cdot y^2 = 0$, and if $f \notin (x)$, then some/every representative f has a nonzero term that only involves Y, and $f \cdot Y^2$ has a noznero term only involving Y, and hence nonzero modulo (X^2Y, XY^2) . The claim follows. Along similar lines, $\operatorname{ann}_R(x^2) = (y)$.
 - (d) If ann_R(m) = p, then the map R → M sending 1 → m has kernel p, so one has an injection R/p → M. Conversely, if R/p → M, then the image of 1 has annihilator p.
- (3) Using the Theorem. Let R be a Noetherian ring.
 - (a) Restate the Theorem in the special case $W = R \setminus p$ with our standard notation for this setting.
 - (b) Show (either using the Theorem or 2(d) above) that $Ass_R(M) \subseteq Supp_R(M)$.
 - (c) Use the Theorem (and the previous part or otherwise) to prove the Corollary.
 - (d) Show the more general statement: if M is a nonzero module, then the primes that are minimal within the support of I are associated to M.
 - (a) $\operatorname{Ass}_{R_{\mathfrak{p}}}(M_{\mathfrak{p}}) = \{\mathfrak{q}R_{\mathfrak{p}} \mid \mathfrak{q} \in \operatorname{Ass}_{R}(M) \text{ and } \mathfrak{q} \subseteq \mathfrak{p}\}.$
 - **(b)** Suppose that $\mathfrak{p} \in \operatorname{Ass}_R(M)$. Then $\mathfrak{p}R_{\mathfrak{p}} \in \operatorname{Ass}_{R_{\mathfrak{p}}}(M_{\mathfrak{p}})$ so $M_{\mathfrak{p}} \neq 0$.
 - (c) Let M = R/I and $\mathfrak{p} \in Min(I)$. Then $M_{\mathfrak{p}} \neq 0$ (for various reasons as previously discussed in localizations), so $M_{\mathfrak{p}} \neq 0$. But the support of $M_{\mathfrak{p}}$ is $V(IR_{\mathfrak{p}}) = {\mathfrak{p}R_{\mathfrak{p}}}$, so $\mathfrak{p}R_{\mathfrak{p}} \in Ass_{R_{\mathfrak{p}}}(M_{\mathfrak{p}})$ and hence $\mathfrak{p} \in Ass_R(M)$.
 - (d) The previous argument shows this.
- (4) The ring of Puiseux series is $R = \bigcup_{n \ge 1} \mathbb{C}[X^{1/n}]$: elements consist of power series with fractional exponents that have a common denominator (though different elements can have different common denominators).
 - (a) Show that every nonzero element of R can be written in the form $X^{m/n} \cdot u$ for some unit u.
 - (b) Show that the *R*-module R/(X) is nonzero but has no associated primes.
- (5) Proof of Theorem: Let R be a Noetherian ring, W be a multiplicatively closed set, and M be a module.

¹Hint: Consider xy and y^2 .

- (a) Suppose that p is an associated prime of M with W ∩ p = Ø, and let m be a witness for p as an associated prime of M. Show that W⁻¹p is an associated prime of W⁻¹M with witness m/l.
- (b) Suppose that $W^{-1}\mathfrak{p} \in \operatorname{Spec}(W^{-1}R)$ is an associated prime of $W^{-1}M$. Explain why there is a witness of the form $\frac{m}{1}$.
- (c) Let $\mathfrak{p} = (f_1, \ldots, f_t)$. Explain why there exist $w_1, \ldots, w_t \in W$ such that $w_i f_i m = 0$ in M for all i.
- (d) Show that $w_1 \cdots w_t m$ is a witness for p as an associated prime of M.
- (6) Let R be a Noetherian ring and M be a module. Show that $\mathfrak{p} \in \operatorname{Ass}_R(M)$ if and only if for every $r \in \mathfrak{p}$ and every nonzero $m \in M$, there exists some $u \notin \mathfrak{p}$ such that urm = 0.
- (7) Let R be a Noetherian ring. Is every minimal prime of a zerodivisor a minimal prime of R?