DEFINITION: Let R be a ring and M be a module. A prime ideal $\mathfrak p$ of R is an **associated prime** of M if $\mathfrak p = \operatorname{ann}_R(m)$ for some $m \in M$. The element m is called a **witness** for the associated prime $\mathfrak p$. We write $\operatorname{Ass}_R(M)$ for the set of associated primes of a module.

LEMMA: Let R be a Noetherian ring and M be a module. For any nonzero element $m \in M$, the ideal $\operatorname{ann}_R(m)$ is contained in an associated prime of M. In particular, if $M \neq 0$, then M has an associated prime.

DEFINITION: Let R be a ring and M be an R-module. We say that an element $r \in R$ is a **zerodivisor** on M if there is some $m \in M \setminus 0$ such that rm = 0.

PROPOSITION: Let R be a Noetherian ring and M an R-module. The set of zerodivisors on M is the union of the associated primes of M.

THEOREM: Let ${\cal R}$ be a Noetherian ring, ${\cal W}$ be a multiplicatively closed set, and ${\cal M}$ be a module. Then

$$\operatorname{Ass}_{W^{-1}R}(W^{-1}M) = \{W^{-1}\mathfrak{p} \mid \mathfrak{p} \in \operatorname{Ass}_R(M), \mathfrak{p} \cap W = \emptyset\}.$$

COROLLARY: Let R be a Noetherian ring and I be an ideal. Then $Min(I) \subseteq Ass_R(R/I)$.

- (1) Proof of Lemma and Proposition: Let R be a Noetherian ring and M be a nonzero module.
 - (a) Let $S = \{\operatorname{ann}_R(m) \mid m \in M \setminus 0\}$. Explain why S has a maximal element J.
 - **(b)** Let $J = \operatorname{ann}_R(m)$ and suppose that $rs \in J$ but $s \notin J$. Explain why $J = \operatorname{ann}_R(sm)$.
 - **(c)** Conclude the proof of the Lemma.
 - **(d)** Deduce the Proposition from the Lemma.
 - (e) What does the Proposition say in the special case when M=R?
- (2) Working with associated primes.
 - (a) Let R be a domain and M be a torsionfree module. Show that $\mathrm{Ass}_R(M)=\{(0)\}.$
 - **(b)** Let R be a ring and $\mathfrak p$ be a prime ideal. Show that for any nonzero element $\overline r \in R/\mathfrak p$ that $\operatorname{ann}_R(\overline r) = \mathfrak p$ and use the definition to deduce that $\operatorname{Ass}_R(R/\mathfrak p) = \{\mathfrak p\}$.
 - (c) Let K be a field and $R = K[X,Y]/(X^2Y,XY^2)$. Use¹ the definition to show that (x,y), (x), and (y) are associated primes of R.
 - (d) Let M be a module. Explain why $\mathfrak{p} \in \mathrm{Ass}_R(M)$ if and only if there is an injective R-module homomorphism $R/\mathfrak{p} \hookrightarrow M$.
- (3) Using the Theorem. Let R be a Noetherian ring.
 - (a) Restate the Theorem in the special case $W=R \setminus \mathfrak{p}$ with our standard notation for this setting.
 - **(b)** Show (either using the Theorem or 2(d) above) that $\mathrm{Ass}_R(M)\subseteq \mathrm{Supp}_R(M)$.
 - (c) Use the Theorem (and the previous part or otherwise) to prove the Corollary.
 - (d) Show the more general statement: if M is a nonzero module, then the primes that are minimal within the support of I are associated to M.

¹Hint: Consider xy and y^2 .

- (4) The ring of Puiseux series is $R = \bigcup_{n\geq 1} \mathbb{C}[X^{1/n}]$: elements consist of power series with fractional exponents that have a common denominator (though different elements can have different common denominators).
 - (a) Show that every nonzero element of R can be written in the form $X^{m/n} \cdot u$ for some unit u.
 - (b) Show that the R-module R/(X) is nonzero but has no associated primes.
- (5) Proof of Theorem: Let R be a Noetherian ring, W be a multiplicatively closed set, and M be a module.
 - (a) Suppose that $\mathfrak p$ is an associated prime of M with $W \cap \mathfrak p = \emptyset$, and let m be a witness for $\mathfrak p$ as an associated prime of M. Show that $W^{-1}\mathfrak p$ is an associated prime of $W^{-1}M$ with witness $\frac{m}{1}$.
 - (b) Suppose that $W^{-1}\mathfrak{p}\in \operatorname{Spec}(W^{-1}R)$ is an associated prime of $W^{-1}M$. Explain why there is a witness of the form $\frac{m}{1}$.
 - (c) Let $\mathfrak{p} = (f_1, \ldots, f_t)$. Explain why there exist $w_1, \ldots, w_t \in W$ such that $w_i f_i m = 0$ in M for all i.
 - (d) Show that $w_1 \cdots w_t m$ is a witness for \mathfrak{p} as an associated prime of M.
- (6) Let R be a Noetherian ring and M be a module. Show that $\mathfrak{p} \in \mathrm{Ass}_R(M)$ if and only if for every $r \in \mathfrak{p}$ and every nonzero $m \in M$, there exists some $u \notin \mathfrak{p}$ such that urm = 0.
- (7) Let R be a Noetherian ring. Is every minimal prime of a zerodivisor a minimal prime of R?