THEOREM: Let R be a Noetherian ring. Every ideal of R has finitely many minimal primes.

LEMMA: Let R be a ring, I an ideal, and $\mathfrak{p}_1, \ldots, \mathfrak{p}_t$ a finite set of incomparable prime ideals; i.e., $\mathfrak{p}_i \not\subseteq \mathfrak{p}_j$ for any $i \neq j$. If $I = \mathfrak{p}_1 \cap \cdots \cap \mathfrak{p}_t$, then $Min(I) = {\mathfrak{p}_1, \ldots, \mathfrak{p}_t}$.

COROLLARY: Let R be a Noetherian ring. Every radical ideal of R can be written as a finite intersection of primes in a unique way such that no term can be omitted.

- (1) Minimal primes review:
 - (a) What is the intersection of all minimal primes of R?
 - (b) What is the intersection of all minimal primes of *I*?
 - (c) Explain why an arbitrary intersection of prime ideals is radical.
 - (d) Explain why any radical ideal is an intersection of prime ideals.
 - (a) The nilradical: set of nilpotents.
 - **(b)** The radical of *I*.
 - (c) Follows from the definition of prime.
 - (d) Formal Nullstellensatz.

(2) Proof of Theorem: Let R be a Noetherian ring.

- (a) Suppose the conclusion is false. Explain why¹ the set of ideals that do not have finitely many minimal primes has a maximal element J.
- **(b)** Explain why J is not prime.
- (c) Explain why, if $ab \in J$, $V(J) = V(J + (a)) \cup V(J + (b))$; i.e., every prime that contains J either contains J + (a) or J + (b).
- (d) Conclude the proof.
 - (a) In a Noetherian ring, any nonempty family of ideals has a maximal element.
 - **(b)** A prime has one minimal prime.
 - (c) If p ⊇ J ∋ ab, then a ∈ p or b ∈ p. In the first case, J + (a) ⊆ p; similarly in the second.
 - (d) By minimality, J + (a) and J + (b) have finitely many minimal primes. But any minimal prime of J is a minimal prime of J + (a) or J + (b), and the union of these sets is finite, so J has finitely many minimal primes.
- (3) In this problem, we will show that the minimal primes of
 - $R = \mathbb{Q}[X, Y, Z, W] / (X^2 Z^2, XY ZW, Y^2 W^2) \text{ are } (x z, y w) \text{ and } (x + z, y + w).$ Equivalently, we show that the minimal primes of $I = (X^2 - Z^2, XY - ZW, Y^2 - W^2)$ are (X + Z, Y - W) and (X + Z, Y + W).
 - (a) Factor the first and last relations to show that any prime containing I contains either X Z or X + Z, and also contains either Y W or Y + W.

¹Warning: this looks like cause to apply Zorn's Lemma, but that is not why.

- **(b)** Show² that $(X Z, Y W) \supseteq I$ and $(X + Z, Y + W) \supseteq I$.
- (c) Show that $XY \in (X Z, Y + W) + I$. Deduce that any prime that contains (X Z, Y + W) and I also contains either (X Z, Y W) or (X + Z, Y + W).
- (d) Deduce the claim.
 - (a) If $\mathfrak{p} \supseteq I$, then $\mathfrak{p} \ni (X Z)(X + W)$, so $\mathfrak{p} \ni X Z$ or $\mathfrak{p} \ni X + Z$. Likewise with $Y \pm W$.
 - (b) We have $X^2 Z^2, Y^2 W^2 \in (X Z, Y W)$, so we just need to check that $XY ZW \in (X Z, Y W)$. We have $XY ZW \equiv XY XY \equiv 0 \mod (X Z, Y W)$. Similarly for the other.
 - (c) We have $XY ZW \equiv XY X(-Y) = 2XY \mod (X Z, Y + W)$; dividing by 2, we get $XY \in (X Z, Y + W) + I$. Then any prime containing (X Z, Y + W) and I contains X Z, Y + W and either X or Y, but given X, the prime contains $(X, Z, Y + W) \supseteq (X + Z, Y + W)$. Similarly if p contains X Z, Y + W, Y, then p contains $(X Z, Y, W) \supseteq (X Z, Y W)$.
 - (d) One deduces similarly to above that a prime containing I and (X + Z, Y W) contains one of the given primes. Thus any prime containing I contains (X Z, Y W) or (X + Z, Y + W), so these are the minimal primes.
- (4) (a) Use the Theorem to show that, if R is Noetherian, a subset of Spec(R) is closed if and only if it is a finite union of "upward intervals" V(p_i).
 - (b) Use the Theorem to show that, if R is Noetherian, then Min(R) is discrete.
 - (c) Prove the Lemma.
 - (d) Prove the Corollary.
 - (a) Follows from the fact that every $p \in V(I)$ contains a minimal prime of I.
 - (b) Every point is closed, and the set is finite, so any subset is closed.
 - (c) Suppose that I = p₁ ∩ ··· ∩ pt with pi incomparable. Note that each pi contains I. Suppose that q ⊇ I. We claim that q contains some pi; if not, take fi ∈ pi \ q; then f₁ ··· ft ∈ I \ q, a contradiction. It follows that any minimal prime is some pi, and each is minimal by incomparability.
 - (d) Every radical ideal is the intersection of its minimal primes.
- (5) (a) Compute the minimal primes of R = Q[X, Y, Z]/(XY, XZ, YZ).
 (b) Compute the minimal primes of R = Q[X, Y, Z]/(X² − X³, XY³, XZ⁴ − Z⁴).
- (6) Let K be a field. Let $R = \frac{K[X_1, X_2, X_3, \dots, Y_1, Y_2, Y_3, \dots]}{(\{X_i Y_i \mid i \ge 1\})}$. Compute Min(R), and show that (x_1, x_2, x_3, \dots) is not open in Min(R); in particular, Min(R) is not discrete.
- (7) Let K be a field. Let $R = \frac{K[X_1, X_2, X_3, \dots]}{(\{X_i X_j X_j \mid 1 \le i \le j\})}$. Compute Min(R), and show that (x_1, x_2, x_3, \dots) is not open in Min(R); in particular, Min(R) is not discrete.

²Hint: Sometimes if you want to show $f \in J$ it is cleanest to show $f \equiv 0 \mod J$.