DEFINITION: Let \mathcal{P} be a property¹ of a ring. We say that

• \mathcal{P} is preserved by localization if

 \mathcal{P} holds for $R \Longrightarrow$ for every multiplicatively closed set W, \mathcal{P} holds for $W^{-1}R$.

• *P* is a **local property** if

 \mathcal{P} holds for $R \iff$ for every prime ideal $\mathfrak{p} \in \operatorname{Spec}(R)$, \mathcal{P} holds for $R_{\mathfrak{p}}$.

One defines **preserved by localization** and **local property** for properties of modules in the same way, or for properties of a ring element (where one considers $\frac{r}{1} \in W^{-1}R$ or R_{p} in the right-hand side) or module element.

DEFINITION: The **support** of a module M is

 $\{\mathfrak{p}\in \operatorname{Spec}(R)\mid M_{\mathfrak{p}}\neq 0\}.$

PROPOSITION: If M is a finitely generated module, then $\text{Supp}(M) = V(\text{ann}_R(M))$.

- (1) Let R be a ring, M be a module, and $m \in M$.
 - (a) Show that² the following are equivalent:
 - (i) m = 0 in M;
 - (ii) $\frac{m}{1} = 0$ in $W^{-1}M$ for all multiplicatively closed $W \subseteq R$;
 - (iii) $\frac{\dot{m}}{1} = 0$ in $M_{\mathfrak{p}}$ for all $\mathfrak{p} \in \operatorname{Spec}(R)$;
 - (iv) $\frac{m}{1} = 0$ in $M_{\mathfrak{m}}$ for all $\mathfrak{m} \in \operatorname{Max}(R)$.
 - (b) Deduce that "= 0" (as a property of a module element) is preserved by localization, and a local property.
 - (c) Show that the "= 0" locus (as a property of a module element) of $m \in M$ is $D(\operatorname{ann}_R(m))$.
 - (a) The implication (i)⇒(ii) is clear from the definition of localization, and (ii)⇒(iii)⇒(iv) are tautologies. Suppose that m ≠ 0. Then ann_R(m) is a proper ideal, so it is contained in some maximal ideal m. We claim that m/1 is nonzero in M_m. Indeed, m/1 is zero if and only if there is some w ∈ R \ m such that wm = 0, but by assumption this is impossible.
 - (b) The implication (i)⇒(ii) means preserved by localization, while (i)⇔(iii) means local property.
 - (c) Reviewing the argument from (a), we have $\frac{m}{1} = 0$ if and only if there is some $w \in W$ with wm = 0, which happens if and only if $R \setminus \mathfrak{p} \cap \operatorname{ann}_R(m) = \emptyset$, which is equivalent to $\operatorname{ann}_R(m) \subseteq \mathfrak{p}$.
- (2) Let R be a ring, M be a module.
 - (a) Show that the following are equivalent, and deduce that "= 0" (as a property of a module) is preserved by localization, and a local property.
 - (i) M = 0
 - (ii) $W^{-1}M = 0$ for all multiplicatively closed $W \subseteq R$;
 - (iii) $M_{\mathfrak{p}} = 0$ for all $\mathfrak{p} \in \operatorname{Spec}(R)$;
 - (iv) $M_{\mathfrak{m}} = 0$ for all $\mathfrak{m} \in \operatorname{Max}(R)$.

¹For example, two properties of a ring are "is reduced" or "is a domain".

²Hint: Go (i) \Rightarrow (ii) \Rightarrow (iii) \Rightarrow (iv) \Rightarrow (i). For the last, If $m \neq 0$, consider a maximal ideal containing $\operatorname{ann}_R(m)$.

(b) Prove³ the Proposition.

- (a) Again (i) \Rightarrow (ii) \Rightarrow (iii) \Rightarrow (iv) are clear. If $M \neq 0$, take some nonzero $m \in M$. Then there is some m such that m/1 is nonzero in $M_{\mathfrak{m}}$ so $M_{\mathfrak{m}} \neq 0$.
- (b) Let $M = \sum_{i} Rm_{i}$. Since $M_{\mathfrak{p}} = \sum_{i} R_{\mathfrak{p}} \frac{m_{i}}{1}$, we have $M_{\mathfrak{p}} = 0$ if and only each $\frac{m_{i}}{1} = 0$, which happens if and only if $\mathfrak{p} \in \bigcap_{i} D(\operatorname{ann}_{R}(m_{i}))$. This equals $D(\bigcap_{i} D\operatorname{ann}_{R}(m_{i})) = D(\operatorname{ann}_{R}(M))$. Then, we are considering the complement.
- (3) More local properties
 - (a) Let R be a ring and $N \subseteq M$ modules. Show⁴ that the following are equivalent, and deduce that M = N for a submodule N is preserved by localization and a local property:
 - (i) M = N.
 - (ii) $W^{-1}M = W^{-1}N$ for all multiplicatively closed $W \subseteq R$;
 - (iii) $M_{\mathfrak{p}} = N_{\mathfrak{p}}$ for all $\mathfrak{p} \in \operatorname{Spec}(R)$;
 - (iv) $M_{\mathfrak{m}} = N_{\mathfrak{m}}$ for all $\mathfrak{m} \in \operatorname{Max}(R)$.
 - (b) Let R be a ring. Show that the following are equivalent:
 - (i) R is reduced
 - (ii) $W^{-1}R$ is reduced for all multiplicatively closed $W \subseteq R$;
 - (iii) $R_{\mathfrak{p}}$ is reduced for all $\mathfrak{p} \in \operatorname{Spec}(R)$.
 - (iv) $R_{\mathfrak{m}}$ is reduced for all $\mathfrak{m} \in Max(R)$.
 - (a) Again (i)⇒(iii)⇒(iii)⇒(iv) are clear. If N ⊊ M, then M/N ≠ 0, and by the above there is some m such that (M/N)_m ≠ 0. But (M/N)_m ≅ M_m/N_m so N_m ⊊ M_m.
 - (b) Suppose that R is reduced and let W ⊆ R be multiplicatively closed. Take a nilpotent element r/w. Then (r/w)ⁿ = 0 implies there is some v ∈ W with vrⁿ = 0. Then (vr)ⁿ = 0 so vr = 0 and r/w = 0 in R_p. Again (ii)⇒(iii)⇒(iv) are tautologies. Suppose that R is not reduced and take rⁿ = 0 with r ≠ 0. By part (a), for every maximal ideal m in R_m we have (r/1)ⁿ = 0, and for some maximal ideal we have r/1 ≠ 0, so R_m is not reduced.

(4) Not so local.

- (a) Show that the property R is a domain is preserved by localization.
- (b) Let K be a field and $R = K \times K$. Show that $R_{\mathfrak{p}}$ is a field for all $\mathfrak{p} \in \operatorname{Spec}(R)$. Conclude that the property that R is a domain (or R is a field) is not a local property.
 - (a) Suppose that R is a domain and (a/u)(b/v) = 0 in some R_p . Then there is some $w \notin p$ such that wab = 0, so a = 0 or b = 0, whence a/u = 0 or b/v = 0, so R_p is a domain.
 - **(b)** The ring $K \times K$ has two prime ideals $0 \times K$ and $K \times 0$. The kernel of the localization map $(K \times K)_{0 \times K}$ is the set of elements that are killed by some element not in $0 \times K$; i.e., the set of (a, b) such that there is some $(c, d) \in K^{\times} \times K$ with (ac, bd) = (0, 0). This forces a = 0 and conversely, for an element (0, b) we have (0, b)(1, 0) = (0, 0), so this kernel is exactly $0 \times K$. Thus

$$(K \times K)_{0 \times K} \cong \left(\frac{K \times K}{0 \times K}\right)_{\overline{0 \times K}} \cong K_0 \cong K.$$

Similarly for the other prime.

³Recall that if $M = \sum_{i} Rm_{i}$ is finitely generated then $W^{-1}M = \sum_{i} W^{-1}R\frac{m_{i}}{1}$ and that an element annihilates a module if and only if it annihilates every generator in a generating set. ⁴Hint: Consider M/N.

- (5) More local properties, or not.
 - (a) Let M be an R-module. Show that the property that M is finitely generated is preserved by localization but is not⁵ a local property.
 - (b) Let $R \subseteq S$ be an inclusion of rings. Show that the properties that $R \subseteq S$ is algebra-finite/integral/modulefinite are preserved by localization on R: i.e., if one of these holds, the same holds for $W^{-1}R \subseteq W^{-1}S$ for any $W \subseteq R$ multiplicatively closed.
 - (c) Let $R \subseteq S$ be an inclusion of rings, and $s \in S$. Show that the property that $s \in S$ is integral over R is a local property on R: i.e., this holds if and only if it holds for $\frac{s}{1} \in S_{\mathfrak{p}}$ over $R_{\mathfrak{p}}$ for each $\mathfrak{p} \in \operatorname{Spec}(R)$.
 - (d) Is the property that $r \in R$ is a unit a local property?
 - (e) Is the property that $r \in R$ is a zerodivisor a local property?
 - (f) Is the property that $r \in R$ is nilpotent a local property?
 - (g) Let $R \subseteq S$ be an inclusion of rings. Are the properties $R \subseteq S$ is algebra-finite/module-finite local properties on R?
- (6) Let \mathcal{P} be a local property of a ring, and $f_1, \ldots, f_t \in R$ such that $(f_1, \ldots, f_t) = R$. Show that if \mathcal{P} holds for each R_{f_i} , then \mathcal{P} holds for R.

⁵Hint: Consider $\bigoplus_{\alpha \in \mathbb{C}} \mathbb{C}[X]/(X - \alpha)$