DEFINITION: Let P be a property¹ of a ring. We say that

• P is preserved by localization if

P holds for $R \Longrightarrow$ for every multiplicatively closed set W, P holds for $W^{-1}R$.

• P is a local property if

P holds for $R \Longleftrightarrow$ for every prime ideal $\mathfrak{p} \in \text{Spec}(R)$, P holds for $R_{\mathfrak{p}}$.

One defines preserved by localization and local property for properties of modules in the same way, or for properties of a ring element (where one considers $\frac{r}{1} \in W^{-1}R$ or $R_{\mathfrak{p}}$ in the right-hand side) or module element.

DEFINITION: The **support** of a module M is

 $\{\mathfrak{p} \in \text{Spec}(R) \mid M_{\mathfrak{p}} \neq 0\}.$

PROPOSITION: If M is a finitely generated module, then $\text{Supp}(M) = V(\text{ann}_R(M)).$

- (1) Let R be a ring, M be a module, and $m \in M$.
	- (a) Show that² the following are equivalent:
		- (i) $m = 0$ in M ;
		- (ii) $\frac{m}{1} = 0$ in $W^{-1}M$ for all multiplicatively closed $W \subseteq R$;
		- (iii) $\frac{\dot{m}}{1} = 0$ in $M_{\mathfrak{p}}$ for all $\mathfrak{p} \in \text{Spec}(R)$;
		- (iv) $\frac{\dot{m}}{1} = 0$ in $M_{\mathfrak{m}}$ for all $\mathfrak{m} \in \text{Max}(R)$.
	- (b) Deduce that " $= 0$ " (as a property of a module element) is preserved by localization, and a local property.
	- (c) Show that the "= 0" locus (as a property of a module element) of $m \in M$ is $D(\operatorname{ann}_R(m))$.
		- (a) The implication (i) \Rightarrow (ii) is clear from the definition of localization, and (ii) \Rightarrow (iii) \Rightarrow (iv) are tautologies. Suppose that $m \neq 0$. Then $\text{ann}_R(m)$ is a proper ideal, so it is contained in some maximal ideal m. We claim that $m/1$ is nonzero in M_m . Indeed, $m/1$ is zero if and only if there is some $w \in R \setminus \mathfrak{m}$ such that $wm = 0$, but by assumption this is impossible.
		- (b) The implication (i) \Rightarrow (ii) means preserved by localization, while (i) \Leftrightarrow (iii) means local property.
		- (c) Reviewing the argument from (a), we have $\frac{m}{1} = 0$ if and only if there is some $w \in W$ with $wm = 0$, which happens if and only if $\overline{R} \setminus \mathfrak{p} \cap \operatorname{ann}_R(m) = \emptyset$, which is equivalent to $\operatorname{ann}_R(m) \subseteq \mathfrak{p}.$
- (2) Let R be a ring, M be a module.
	- (a) Show that the following are equivalent, and deduce that " $= 0$ " (as a property of a module) is preserved by localization, and a local property.
		- (i) $M = 0$
		- (ii) $W^{-1}M = 0$ for all multiplicatively closed $W \subseteq R$;
		- (iii) $M_{\mathfrak{p}} = 0$ for all $\mathfrak{p} \in \text{Spec}(R)$;
		- (iv) $M_{\mathfrak{m}} = 0$ for all $\mathfrak{m} \in \text{Max}(R)$.

¹For example, two properties of a ring are "is reduced" or "is a domain".

²Hint: Go (i)⇒(ii)⇒(iii)⇒(iv)⇒(i). For the last, If $m \neq 0$, consider a maximal ideal containing ann_R(m).

(b) Prove³ the Proposition.

- (a) Again (i)⇒(ii)⇒(iii)⇒(iv) are clear. If $M \neq 0$, take some nonzero $m \in M$. Then there is some m such that $m/1$ is nonzero in M_m so $M_m \neq 0$.
- **(b)** Let $M = \sum_i Rm_i$. Since $M_{\mathfrak{p}} = \sum_i R_{\mathfrak{p}} \frac{m_i}{1}$ $\frac{n_i}{1}$, we have $M_{\mathfrak{p}} = 0$ if and only each $\frac{m_i}{1} =$ 0, which happens if and only if $\mathfrak{p} \in \bigcap_i D(\text{ann}_R(m_i))$. This equals $D(\bigcap_i \text{Dann}_R(m_i)) =$ $D(\mathrm{ann}_R(M))$. Then, we are considering the complement.
- (3) More local properties
	- (a) Let R be a ring and $N \subseteq M$ modules. Show⁴ that the following are equivalent, and deduce that $M = N$ for a submodule N is preserved by localization and a local property:
		- (i) $M = N$.
		- (ii) $W^{-1}M = W^{-1}N$ for all multiplicatively closed $W \subseteq R$;
		- (iii) $M_{\mathfrak{p}} = N_{\mathfrak{p}}$ for all $\mathfrak{p} \in \text{Spec}(R)$;
		- (iv) $M_{\mathfrak{m}} = N_{\mathfrak{m}}$ for all $\mathfrak{m} \in \text{Max}(R)$.
	- (b) Let R be a ring. Show that the following are equivalent:
		- (i) R is reduced
		- (ii) $W^{-1}R$ is reduced for all multiplicatively closed $W \subseteq R$;
		- (iii) R_p is reduced for all $p \in Spec(R)$.
		- (iv) R_m is reduced for all $\mathfrak{m} \in \text{Max}(R)$.
		- (a) Again (i)⇒(ii)⇒(iii)⇒(iv) are clear. If $N \subsetneq M$, then $M/N \neq 0$, and by the above there is some m such that $(M/N)_m \neq 0$. But $(M/\tilde{N})_m \cong M_m/N_m$ so $N_m \subsetneq M_m$.
		- **(b)** Suppose that R is reduced and let $W \subseteq R$ be multiplicatively closed. Take a nilpotent element r/w . Then $(r/w)^n = 0$ implies there is some $v \in W$ with $vr^n = 0$. Then $(vr)^n = 0$ so $vr = 0$ and $r/w = 0$ in R_p . Again (ii) \Rightarrow (iii) \Rightarrow (iv) are tautologies. Suppose that R is not reduced and take $r^n = 0$ with $r \neq 0$. By part (a), for every maximal ideal m in R_m we have $(r/1)^n = 0$, and for some maximal ideal we have $r/1 \neq 0$, so R_m is not reduced.

(4) Not so local.

- (a) Show that the property R is a domain is preserved by localization.
- (b) Let K be a field and $R = K \times K$. Show that R_p is a field for all $\mathfrak{p} \in \text{Spec}(R)$. Conclude that the property that R is a domain (or R is a field) is not a local property.
	- (a) Suppose that R is a domain and $(a/u)(b/v) = 0$ in some R_p . Then there is some $w \notin \mathfrak{p}$ such that $wab = 0$, so $a = 0$ or $b = 0$, whence $a/u = 0$ or $b/v = 0$, so R_p is a domain.
	- (b) The ring $K \times K$ has two prime ideals $0 \times K$ and $K \times 0$. The kernel of the localization map $(K \times K)_{0 \times K}$ is the set of elements that are killed by some element not in $0 \times K$; i.e., the set of (a, b) such that there is some $(c, d) \in K^{\times} \times K$ with $(ac, bd) = (0, 0)$. This forces $a = 0$ and conversely, for an element $(0, b)$ we have $(0, b)(1, 0) = (0, 0)$, so this kernel is exactly $0 \times K$. Thus

$$
(K \times K)_{0 \times K} \cong \left(\frac{K \times K}{0 \times K}\right)_{\overline{0 \times K}} \cong K_0 \cong K.
$$

Similarly for the other prime.

³Recall that if $M = \sum_i Rm_i$ is finitely generated then $W^{-1}M = \sum_i W^{-1}R\frac{m_i}{1}$ and that an element annihilates a module if and only if it annihilates every generator in a generating set.

⁴Hint: Consider M/N .

- (5) More local properties, or not.
	- (a) Let M be an R -module. Show that the property that M is finitely generated is preserved by localization but is not⁵ a local property.
	- (b) Let $R \subseteq S$ be an inclusion of rings. Show that the properties that $R \subseteq S$ is algebra-finite/integral/modulefinite are preserved by localization on R: i.e., if one of these holds, the same holds for $W^{-1}R \subseteq$ $W^{-1}S$ for any $W \subseteq R$ multiplicatively closed.
	- (c) Let $R \subseteq S$ be an inclusion of rings, and $s \in S$. Show that the property that $s \in S$ is integral over R is a local property on R: i.e., this holds if and only if it holds for $\frac{s}{1} \in S_p$ over R_p for each $\mathfrak{p} \in \text{Spec}(R)$.
	- (d) Is the property that $r \in R$ is a unit a local property?
	- (e) Is the property that $r \in R$ is a zerodivisor a local property?
	- (f) Is the property that $r \in R$ is nilpotent a local property?
	- (g) Let $R \subseteq S$ be an inclusion of rings. Are the properties $R \subseteq S$ is algebra-finite/module-finite local properties on R?
- (6) Let P be a local property of a ring, and $f_1, \ldots, f_t \in R$ such that $(f_1, \ldots, f_t) = R$. Show that if P holds for each R_{f_i} , then P holds for R .

⁵Hint: Consider $\bigoplus_{\alpha \in \mathbb{C}} \mathbb{C}[X]/(X - \alpha)$