DEFINITION: Let \mathcal{P} be a property¹ of a ring. We say that

• \mathcal{P} is preserved by localization if

 \mathcal{P} holds for $R \Longrightarrow$ for every multiplicatively closed set W, \mathcal{P} holds for $W^{-1}R$.

• *P* is a **local property** if

 \mathcal{P} holds for $R \iff$ for every prime ideal $\mathfrak{p} \in \operatorname{Spec}(R)$, \mathcal{P} holds for $R_{\mathfrak{p}}$.

One defines **preserved by localization** and **local property** for properties of modules in the same way, or for properties of a ring element (where one considers $\frac{r}{1} \in W^{-1}R$ or $R_{\mathfrak{p}}$ in the right-hand side) or module element.

DEFINITION: The **support** of a module M is

 $\{\mathfrak{p} \in \operatorname{Spec}(R) \mid M_{\mathfrak{p}} \neq 0\}.$

PROPOSITION: If M is a finitely generated module, then $\text{Supp}(M) = V(\text{ann}_R(M))$.

- (1) Let R be a ring, M be a module, and $m \in M$.
 - (a) Show that² the following are equivalent:
 - (i) m = 0 in M;
 - (ii) $\frac{m}{1} = 0$ in $W^{-1}M$ for all multiplicatively closed $W \subseteq R$;
 - (iii) $\frac{\tilde{m}}{1} = 0$ in $M_{\mathfrak{p}}$ for all $\mathfrak{p} \in \operatorname{Spec}(R)$;
 - (iv) $\frac{\dot{m}}{1} = 0$ in $M_{\mathfrak{m}}$ for all $\mathfrak{m} \in \operatorname{Max}(R)$.
 - (b) Deduce that "= 0" (as a property of a module element) is preserved by localization, and a local property.
 - (c) Show that the "= 0" locus (as a property of a module element) of $m \in M$ is $D(\operatorname{ann}_R(m))$.
- (2) Let R be a ring, M be a module.
 - (a) Show that the following are equivalent, and deduce that "= 0" (as a property of a module) is preserved by localization, and a local property.
 - (i) M = 0
 - (ii) $W^{-1}M = 0$ for all multiplicatively closed $W \subseteq R$;
 - (iii) $M_{\mathfrak{p}} = 0$ for all $\mathfrak{p} \in \operatorname{Spec}(R)$;
 - (iv) $M_{\mathfrak{m}} = 0$ for all $\mathfrak{m} \in \operatorname{Max}(R)$.
 - **(b)** Prove³ the Proposition.
- (3) More local properties
 - (a) Let R be a ring and $N \subseteq M$ modules. Show⁴ that the following are equivalent, and deduce that M = N for a submodule N is preserved by localization and a local property:
 - (i) M = N.
 - (ii) $W^{-1}M = W^{-1}N$ for all multiplicatively closed $W \subseteq R$;
 - (iii) $M_{\mathfrak{p}} = N_{\mathfrak{p}}$ for all $\mathfrak{p} \in \operatorname{Spec}(R)$;
 - (iv) $M_{\mathfrak{m}} = N_{\mathfrak{m}}$ for all $\mathfrak{m} \in \operatorname{Max}(R)$.

¹For example, two properties of a ring are "is reduced" or "is a domain".

²Hint: Go (i) \Rightarrow (ii) \Rightarrow (iii) \Rightarrow (iv) \Rightarrow (i). For the last, If $m \neq 0$, consider a maximal ideal containing $\operatorname{ann}_R(m)$.

³Recall that if $M = \sum_{i} Rm_{i}$ is finitely generated then $W^{-1}M = \sum_{i} W^{-1}R\frac{m_{i}}{1}$ and that an element annihilates a module if and only if it annihilates every generator in a generating set.

⁴Hint: Consider M/N.

- (b) Let R be a ring. Show that the following are equivalent:
 - (i) R is reduced
 - (ii) $W^{-1}R$ is reduced for all multiplicatively closed $W \subseteq R$;
 - (iii) $R_{\mathfrak{p}}$ is reduced for all $\mathfrak{p} \in \operatorname{Spec}(R)$.
 - (iv) $R_{\mathfrak{m}}$ is reduced for all $\mathfrak{m} \in Max(R)$.
- (4) Not so local.
 - (a) Show that the property R is a domain is preserved by localization.
 - (b) Let K be a field and $R = K \times K$. Show that $R_{\mathfrak{p}}$ is a field for all $\mathfrak{p} \in \operatorname{Spec}(R)$. Conclude that the property that R is a domain (or R is a field) is not a local property.
- (5) More local properties, or not.
 - (a) Let M be an R-module. Show that the property that M is finitely generated is preserved by localization but is not⁵ a local property.
 - (b) Let R ⊆ S be an inclusion of rings. Show that the properties that R ⊆ S is algebra-finite/integral/module-finite are preserved by localization on R: i.e., if one of these holds, the same holds for W⁻¹R ⊆ W⁻¹S for any W ⊆ R multiplicatively closed.
 - (c) Let R ⊆ S be an inclusion of rings, and s ∈ S. Show that the property that s ∈ S is integral over R is a local property on R: i.e., this holds if and only if it holds for ^s/₁ ∈ S_p over R_p for each p ∈ Spec(R).
 - (d) Is the property that $r \in R$ is a unit a local property?
 - (e) Is the property that $r \in R$ is a zerodivisor a local property?
 - (f) Is the property that $r \in R$ is nilpotent a local property?
 - (g) Let $R \subseteq S$ be an inclusion of rings. Are the properties $R \subseteq S$ is algebra-finite/module-finite local properties on R?
- (6) Let \mathcal{P} be a local property of a ring, and $f_1, \ldots, f_t \in R$ such that $(f_1, \ldots, f_t) = R$. Show that if \mathcal{P} holds for each R_{f_i} , then \mathcal{P} holds for R.

⁵Hint: Consider $\bigoplus_{\alpha \in \mathbb{C}} \mathbb{C}[X]/(X - \alpha)$