
§5.21: LOCALIZATION OF RINGS

DEFINITION: Let R be a ring and W a multiplicatively closed subset with 0 /∈ W . The localization
W−1R is the ring with

• elements equivalence classes of (r, w) ∈ R×W , with the class of (r, w) denoted as
r

w
.

• with equivalence relation
s

u
=

t

v
if there is some w ∈ W such that w(sv − tu) = 0,

• addition given by
s

u
+

t

v
=

sv + tu

uv
, and

• multiplication given by
s

u

t

v
=

st

uv
.

(If 0 ∈ W , then W−1R := 0, which by our convention is not a ring.)

DEFINITION: Let R be a ring.
• If f ∈ R is nonnilpotent1, then Rf := {1, f, f 2, . . . }−1R.
• If p ⊆ R is a prime ideal then Rp := (Rr p)−1R.
• The total quotient ring of R is Frac(R) := {w ∈ R | w is a nonzerodivisor}−1R.

For a ring R, multiplicative set W 63 0, and an ideal I , we define

W−1I :=
{ a

w
∈ W−1R | a ∈ I

}
.

THEOREM: Let R be a ring and W be a multiplicatively closed subset. Then the map induced on
Spec corresponding to the natural map R→ W−1R yields a homeomorphism into its image:

Spec(W−1R) ∼= {p ∈ Spec(R) | p ∩W = ∅}.

LEMMA: Let R be a ring and W be a multiplicatively closed subset.
(1) For any ideal I ⊆ R, W−1I = I(W−1R).
(2) For any ideal I ⊆ R, W−1I ∩R = {r ∈ R | ∃w ∈ W : wr ∈ I}.
(3) For any ideal J ⊆ W−1R, W−1(J ∩R) = J .
(4) For any prime ideal p ⊆ R with2 p ∩W = ∅, W−1p is prime.

(1)(1) Computing localizations
(a)(a) What is the natural ring homomorphism R→ W−1R?
(b)(b) Show that the kernel of R→ W−1R is W0 := {r ∈ R | ∃w ∈ W : wr = 0}.
(c)(c) If every element of W is a nonzerodivisor, explain why the equivalence relation on W−1R

simplifies to s
u

= t
v

if and only if sv = tu.
(d)(d) If R is a domain, explain why Frac(R) is the usual fraction field of R.
(e)(e) If R is a domain, explain why W−1R is a subring of the fraction field of R. Which subring?
(f)(f) Let R = R/W0 and W be the image of W in R. Show that W−1R ∼= W

−1
R.

1If f is nilpotent, 0 ∈ {1, f, f2, . . . } so Rf = 0.
2If W ∩ p 3 a, then W−1p 3 a

a = 1
1 , so W−1p =W−1R is the improper ideal!



(a)(a) r 7→ r
1
.

(b)(b) r
1

= 0
1

if and only if ∃w ∈ W : rw = w(1r − 0) = 0.
(c)(c) w(sv − tu) = 0 and w a nonzerdivisor implies sv − tu = 0; i.e., sv = tu.
(d)(d) In light of the above, it’s just the definition.
(e)(e) The equivalence relation on the fractions is the same as that in the fraction field, so the

map is injective; the operations are definitely the same. It is the subring consisting of
fractions that can be written with denominator in W .

(f)(f) We define a map from W−1R → W
−1
R by r

w
7→ r

w
. It is clear from the construction

that this is a surjective homomorphism. Suppose that r
w

is in the kernel, so r
w

= 0
1
.

This means that there is some v ∈ W such that vr = 0; i.e., vr ∈ W0 for some v ∈ W .
Then there is some u ∈ W such that uvr = 0, but uv ∈ W , so r

w
= 0

1
in W−1R.

(2)(2) Ideals in localizations: Let R be a ring and W a multiplicatively closed set.
(a)(a) Use the Theorem to show that, if f ∈ R is nonnilpotent, then

Spec(Rf ) ∼= D(f) ⊆ Spec(R).

(b)(b) Use the Theorem to show that, if p ⊆ R is prime, then

Spec(Rp) ∼= {q ∈ Spec(R) | q ⊆ p} =: Λ(p).

Deduce that Rp is always a local ring.
(c)(c) Draw3 a picture of Spec(C[X,Y ]

(XY ) (x,y)
).

(d)(d) Use Part (3) of the Lemma to show that every ideal of W−1R is of the form W−1I for
some ideal I ⊆ R.

(e)(e) Use Part (3) of the Lemma to show that any localization of a Noetherian ring is Noetherian.

(a)(a) The condition p ∩ {1, f, f 2, . . . } = ∅ is equivalent to f /∈ p; i.e., f ∈ D(p).
(b)(b) The condition q∩ (Rrp) = ∅ is equivalent to q ⊆ p; i.e., q ∈ Λ(p). There is a unique

maximal element in this set, namely p, so Rp is local.
(c)(c)

(x, y)

(x) (y)

(d)(d) Clear.
(e)(e) Given an ideal of W−1R, write it as I(W−1R) for some ideal I of R. Then I =

(f1, . . . , ft) by Noetherianity, whence I(W−1R) is generated by the images f1
1
, . . . , ft

1
.

(3)(3) Examples of localizations
(a)(a) Describe as concretely as possible the rings Z2 and Z(2) as defined above.
(b)(b) Describe as concretely as possible the rings K[X]X and K[X](X).
(c)(c) Describe as concretely as possible the rings K[X, Y ]X and K[X, Y ](X).

(d)(d) Describe as concretely as possible the rings
(

K[X,Y ]
(XY )

)
x

and
(

K[X,Y ]
(XY )

)
(x)

.

3Recall that Spec(C[X,Y ]
(XY ) ) consists of {(x), (y), (x, y − α), (x− β, y) | α, β ∈ C}.



(e)(e) Describe as concretely as possible
(

K[X,Y ]
(X2)

)
x

and
(

K[X,Y ]
(X2)

)
(x)

.

(a)(a) Z2 = {a/b ∈ Q | b = 2n} and Z(2) = {a/b ∈ Q | 2 - b}.
(b)(b) K[X]X = {f/g ∈ K(X) | g = Xn} and K[X](X) = {f/g ∈ K(X) | X - g}.
(c)(c) K[X, Y ]X = {f/g ∈ K(X, Y ) | g = Xn}

and K[X, Y ](X) = {f/g ∈ K(X, Y ) | X - g}.
(d)(d)
(

K[X,Y ]
(XY )

)
x

∼= K[X,X−1] and
(

K[X,Y ]
(XY )

)
(x)

∼= K(Y ).

(e)(e)
(

K[X,Y ]
(X2)

)
x

∼= K[Y ] and
(

K[X,Y ]
(X2)

)
(x)

∼= K(Y )[X]/(X2).

(4) Prove the Lemma and the Theorem.

Lemma:
(a) For the containment ⊆, we have a

w
= a

1
1
w

. For the other, given
∑

i
ai
1

ri
wi

, take w =

w1 · · ·wt and w′i to be the product of all w’s except wi; then∑
i

ai
1

ri
wi

=
∑
i

ai
1

w′iri
w

=
∑
i

aiw
′
iri

w
∈ W−1I.

(b) We have r ∈ W−1I ∩ R if and only if r
1
∈ W−1I , so r

1
= a

w
some a ∈ I, w ∈ W .

Then there is some u ∈ W such that u(wr − a) = 0, so (uw)r ∈ I , as claimed.
(c) Let j = r

w
∈ J . Then r

1
= wj ∈ J ∩ R, r

w
= 1

w
r
1
∈ W−1(J ∩ R). Conversely, if

a
w
∈ W−1(J ∩R) so a ∈ J ∩R, then a

1
∈ J , and a

w
= 1

w
a
1
∈ J .

(d) Let a
u
, b
v
∈ W−1R, and ab

uv
∈ W−1p. Then there are some w ∈ W and p ∈ p such that

ab
uv

= p
w

, so there is t ∈ W with t(wab− uvp) = 0, so (tw)ab ∈ p. Since W ∩ p = ∅,
tw /∈ p so a ∈ p or b ∈ p, and hence a

u
∈ W−1p or b

v
∈ W−1p.

Theorem: Suppose that q is a prime ideal in W−1R and q ∩ R = p. Then W−1p =
W−1(q ∩ R) = q. This shows that the only ideal (in particular, the only prime ideal) that
contracts to p is W−1p, so this map is injective. Since W−1p is prime for any p ∩W = ∅,
and is the bogus ideal otherwise, the image is exactly the primes with p ∩ W = ∅. To
see that it induces a homeomorphism onto its image, it suffices to show that the image
of a closed set is closed. One checks from the definition that the image of V (W−1I) is
V (I) ∩ {p ∈ Spec(R) | p ∩W = ∅}.

(5) Prove the following LEMMA: If V,W are multiplicatively closed sets, then (VW )−1R ∼=
(V
1

)−1(W−1R), where (V
1

)−1 is the image of V in W−1R.

Check that the map (r/w)/(v/1) 7→ r/(wv) is an isomorphism: it is clearly a ring ho-
momorphism, and clearly surjective. If r/(wv) is zero, then there is some u ∈ VW with
ur = 0. We can write u = st with s ∈ V and t ∈ W , so str = 0. But this implies that
s(r/w) = 0 in W−1R (because there is some t ∈ W such that str = 0), and this means
that (r/w)/(v/1) = 0.



(6) Minimal primes.
(a) Let p be a minimal prime of R. Show that for any a ∈ p, there is some u /∈ p and n ≥ 1

such that uan = 0.
(b) Show that the set of minimal4 primes Min(R) with the induced topology from Spec(R) is

Hausdorff.
(c) Let R = K[X1, X2, X3, . . . ]/({XiXj | i 6= j}). Describe Min(R) as a topological space.

4Min(R) denotes the set of primes of R that are minimal. This is the same as Min(0) in our notation of minimal primes of
an ideal; this conflict of notation is standard.


