DEFINITION: Let R be a ring and W a multiplicatively closed subset with $0 \notin W$. The localization $W^{-1}R$ is the ring with

• elements equivalence classes of $(r, w) \in R \times W$, with the class of (r, w) denoted as $\frac{r}{w}$.

• with equivalence relation $\frac{s}{u}$ = t $\frac{\partial}{\partial v}$ if there is some $w \in W$ such that $w(sv - tu) = 0$,

- addition given by $\frac{s}{u}$ $+$ t \overline{v} = $sv + tu$ $\frac{1}{uv}$, and t st
- multiplication given by $\frac{s}{u}$ \overline{v} = $\frac{du}{uv}$.
- (If $0 \in W$, then $W^{-1}R := 0$, which by our convention is not a ring.)

DEFINITION: Let R be a ring.

- If $f \in R$ is nonnilpotent¹, then $R_f := \{1, f, f^2, \dots\}^{-1}R$.
- If $\mathfrak{p} \subseteq R$ is a prime ideal then $R_{\mathfrak{p}} := (R \setminus \mathfrak{p})^{-1}R$.
- The total quotient ring of R is $\text{Frac}(R) := \{w \in R \mid w \text{ is a nonzero divisor}\}^{-1}R$.

For a ring R, multiplicative set $W \not\supseteq 0$, and an ideal I, we define

$$
W^{-1}I:=\left\{\frac{a}{w}\in W^{-1}R\mid a\in I\right\}.
$$

THEOREM: Let R be a ring and W be a multiplicatively closed subset. Then the map induced on Spec corresponding to the natural map $R \to W^{-1}R$ yields a homeomorphism into its image:

 $Spec(W^{-1}R) \cong \{ \mathfrak{p} \in Spec(R) \mid \mathfrak{p} \cap W = \varnothing \}.$

LEMMA: Let R be a ring and W be a multiplicatively closed subset.

- (1) For any ideal $I \subseteq R$, $W^{-1}I = I(W^{-1}R)$.
- (2) For any ideal $I \subseteq R$, $W^{-1}I \cap R = \{r \in R \mid \exists w \in W : wr \in I\}.$
- (3) For any ideal $J \subseteq W^{-1}R$, $W^{-1}(J \cap R) = J$.
- (4) For any prime ideal $\mathfrak{p} \subseteq R$ with² $\mathfrak{p} \cap W = \emptyset$, $W^{-1}\mathfrak{p}$ is prime.

(1) Computing localizations

- (a) What is the natural ring homomorphism $R \to W^{-1}R$?
- (b) Show that the kernel of $R \to W^{-1}R$ is $W0 := \{r \in R \mid \exists w \in W : wr = 0\}.$
- (c) If every element of W is a nonzerodivisor, explain why the equivalence relation on $W^{-1}R$ simplifies to $\frac{s}{u} = \frac{t}{v}$ $\frac{t}{v}$ if and only if $sv = tu$.
- (d) If R is a domain, explain why $Frac(R)$ is the usual fraction field of R.
- (e) If R is a domain, explain why $W^{-1}R$ is a subring of the fraction field of R. Which subring?
- **(f)** Let $\overline{R} = R/W_0$ and \overline{W} be the image of W in \overline{R} . Show that $W^{-1}R \cong \overline{W}^{-1}\overline{R}$.

¹If *f* is nilpotent, $0 \in \{1, f, f^2, \dots\}$ so $R_f = 0$.

²If $W \cap \mathfrak{p} \ni a$, then $W^{-1} \mathfrak{p} \ni \frac{a}{a} = \frac{1}{1}$, so $W^{-1} \mathfrak{p} = W^{-1}R$ is the improper ideal!

(a) $r \mapsto \frac{r}{1}$.

- (b) $\frac{r}{1} = \frac{0}{1}$ $\frac{0}{1}$ if and only if $\exists w \in W : rw = w(1r - 0) = 0.$
- (c) $w(sv tu) = 0$ and w a nonzerdivisor implies $sv tu = 0$; i.e., $sv = tu$.
- (d) In light of the above, it's just the definition.
- (e) The equivalence relation on the fractions is the same as that in the fraction field, so the map is injective; the operations are definitely the same. It is the subring consisting of fractions that can be written with denominator in W.
- **(f)** We define a map from $W^{-1}R \to \overline{W}^{-1}\overline{R}$ by $\frac{r}{w} \mapsto \frac{\overline{r}}{\overline{w}}$. It is clear from the construction that this is a surjective homomorphism. Suppose that $\frac{r}{w}$ is in the kernel, so $\frac{\overline{r}}{\overline{w}} = \frac{\overline{0}}{\overline{1}}$ $\frac{0}{1}$. This means that there is some $\overline{v} \in \overline{W}$ such that $\overline{vr} = \overline{0}$; i.e., $vr \in {}^W0$ for some $v \in W$. Then there is some $u \in W$ such that $uvr = 0$, but $uv \in W$, so $\frac{r}{w} = \frac{0}{1}$ $\frac{0}{1}$ in $W^{-1}R$.
- (2) Ideals in localizations: Let R be a ring and W a multiplicatively closed set.
	- (a) Use the Theorem to show that, if $f \in R$ is nonnilpotent, then

$$
Spec(R_f) \cong D(f) \subseteq Spec(R).
$$

(b) Use the Theorem to show that, if $p \subseteq R$ is prime, then

$$
\operatorname{Spec}(R_{\mathfrak{p}}) \cong \{ \mathfrak{q} \in \operatorname{Spec}(R) \mid \mathfrak{q} \subseteq \mathfrak{p} \} =: \Lambda(\mathfrak{p}).
$$

Deduce that R_p is always a *local* ring.

- (c) Draw³ a picture of Spec $\left(\frac{\mathbb{C}[X,Y]}{(XY)}_{(x,y)}\right)$.
- (d) Use Part (3) of the Lemma to show that every ideal of $W^{-1}R$ is of the form $W^{-1}I$ for some ideal $I \subseteq R$.
- (e) Use Part (3) of the Lemma to show that any localization of a Noetherian ring is Noetherian.
- (a) The condition $\mathfrak{p} \cap \{1, f, f^2, \dots\} = \emptyset$ is equivalent to $f \notin \mathfrak{p}$; i.e., $f \in D(\mathfrak{p})$. **(b)** The condition $\mathfrak{q} \cap (R \setminus \mathfrak{p}) = \emptyset$ is equivalent to $\mathfrak{q} \subseteq \mathfrak{p}$; i.e., $\mathfrak{q} \in \Lambda(\mathfrak{p})$. There is a unique maximal element in this set, namely \mathfrak{p} , so $R_{\mathfrak{p}}$ is local. (c) $\left\langle \right\rangle ^{reg}$ (x) (y) (d) Clear.
	- (e) Given an ideal of $W^{-1}R$, write it as $I(W^{-1}R)$ for some ideal I of R. Then $I =$ (f_1, \ldots, f_t) by Noetherianity, whence $I(W^{-1}R)$ is generated by the images $\frac{f_1}{1}, \ldots, \frac{f_t}{1}$ $\frac{t}{1}$.
- (3) Examples of localizations
	- (a) Describe as concretely as possible the rings \mathbb{Z}_2 and $\mathbb{Z}_{(2)}$ as defined above.
	- **(b)** Describe as concretely as possible the rings $K[X]_X$ and $K[X]_{(X)}$.
	- (c) Describe as concretely as possible the rings $K[X, Y]_X$ and $K[X, Y]_{(X)}$.
	- (d) Describe as concretely as possible the rings $\left(\frac{K[X,Y]}{(XY)}\right)$ $\frac{K[XX]}{(XY)}\bigg)$ and $\left(\frac{K[X,Y]}{(XY)}\right)$ $\frac{K[XX]}{(XY)}\bigg)$ (x) .

³Recall that Spec($\frac{\mathbb{C}[X,Y]}{(XY)}$) consists of $\{(x), (y), (x, y - \alpha), (x - \beta, y) \mid \alpha, \beta \in \mathbb{C}\}.$

(e) Describe as concretely as possible $\left(\frac{K[X,Y]}{(X^2)}\right)$ $\frac{X[X,Y]}{(X^2)}\bigg)$ and $\left(\frac{K[X,Y]}{(X^2)}\right)$ $\frac{X[X,Y]}{(X^2)}\bigg)$ (x) .

(a) $\mathbb{Z}_2 = \{a/b \in \mathbb{Q} \mid b = 2^n\}$ and $\mathbb{Z}_{(2)} = \{a/b \in \mathbb{Q} \mid 2 \nmid b\}.$ (b) $K[X]_X = \{f/g \in K(X) \mid g = X^n\}$ and $K[X]_{(X)} = \{f/g \in K(X) \mid X \nmid g\}.$ (c) $K[X, Y]_X = \{f/g \in K(X, Y) \mid g = X^n\}$ and $K[X, Y]_{(X)} = \{f/g \in K(X, Y) | X \nmid g\}.$ (d) $\left(\frac{K[X,Y]}{f(X)}\right)$ $\frac{K[XX]}{(XY)}$ $\mathcal{L}_x \cong K[X, X^{-1}]$ and $\left(\frac{K[X, Y]}{(XY)}\right)$ $\frac{K[XX,Y]}{(XY)}$ $\underset{(x)}{=} K(Y).$ (e) $\left(\frac{K[X,Y]}{(X^2)}\right)$ $\frac{X[X,Y]}{(X^2)}$ $\mathcal{L}_x \cong K[Y]$ and $\left(\frac{K[X,Y]}{(X^2)}\right)$ $\frac{X[X,Y]}{(X^2)}$ $\chi_{(x)} \cong K(Y)[X]/(X^2).$

(4) Prove the Lemma and the Theorem.

Lemma:

(a) For the containment \subseteq , we have $\frac{a}{w} = \frac{a}{1}$ 1 1 $\frac{1}{w}$. For the other, given $\sum_{i} \frac{a_i}{1}$ 1 ri $\frac{r_i}{w_i}$, take $w =$ $w_1 \cdots w_t$ and w'_i to be the product of all w's except w_i ; then

$$
\sum_{i} \frac{a_i}{1} \frac{r_i}{w_i} = \sum_{i} \frac{a_i}{1} \frac{w'_i r_i}{w} = \sum_{i} \frac{a_i w'_i r_i}{w} \in W^{-1}I.
$$

- (b) We have $r \in W^{-1}I \cap R$ if and only if $\frac{r}{1} \in W^{-1}I$, so $\frac{r}{1} = \frac{a}{w}$ some $a \in I, w \in W$. Then there is some $u \in W$ such that $u(wr - a) = 0$, so $(uw)r \in I$, as claimed.
- (c) Let $j = \frac{r}{y}$ $\frac{r}{w} \in J$. Then $\frac{r}{1} = wj \in J \cap R$, $\frac{r}{w} = \frac{1}{w}$ w r $\frac{r}{1} \in W^{-1}(J \cap R)$. Conversely, if a $\frac{a}{w} \in W^{-1}(J \cap R)$ so $a \in J \cap R$, then $\frac{a}{1} \in J$, and $\frac{a}{w} = \frac{1}{w}$ w a $\frac{a}{1} \in J$.
- (d) Let $\frac{a}{u}$, $\frac{b}{v}$ $\frac{b}{v} \in W^{-1}R$, and $\frac{ab}{uv} \in W^{-1}\mathfrak{p}$. Then there are some $w \in W$ and $p \in \mathfrak{p}$ such that $\frac{ab}{uv} = \frac{p}{u}$ $\frac{p}{w}$, so there is $t \in \tilde{W}$ with $t(wab - wvp) = 0$, so $(tw)ab \in \mathfrak{p}$. Since $W \cap \mathfrak{p} = \emptyset$, $tw \notin \mathfrak{p}$ so $a \in \mathfrak{p}$ or $b \in \mathfrak{p}$, and hence $\frac{a}{u} \in W^{-1}\mathfrak{p}$ or $\frac{b}{v} \in W^{-1}\mathfrak{p}$.

Theorem: Suppose that q is a prime ideal in $W^{-1}\overline{R}$ and $q \cap R = \mathfrak{p}$. Then $W^{-1}\mathfrak{p} =$ $W^{-1}(\mathfrak{q} \cap R) = \mathfrak{q}$. This shows that the only ideal (in particular, the only prime ideal) that contracts to p is W^{-1} p, so this map is injective. Since W^{-1} p is prime for any p ∩ $W = \emptyset$, and is the bogus ideal otherwise, the image is exactly the primes with $\mathfrak{p} \cap W = \emptyset$. To see that it induces a homeomorphism onto its image, it suffices to show that the image of a closed set is closed. One checks from the definition that the image of $V(W^{-1}I)$ is $V(I) \cap \{ \mathfrak{p} \in \text{Spec}(R) \mid \mathfrak{p} \cap W = \varnothing \}.$

(5) Prove the following LEMMA: If V, W are multiplicatively closed sets, then $(VW)^{-1}R \cong$ $\left(\frac{V}{1}\right)$ $\frac{1}{(1)}$)⁻¹($W^{-1}R$), where ($\frac{V}{1}$ $(\frac{V}{1})^{-1}$ is the image of V in $W^{-1}R$.

Check that the map $\left(\frac{r}{w}\right)/(v/1) \mapsto \frac{r}{wv}$ is an isomorphism: it is clearly a ring homomorphism, and clearly surjective. If $r/(wv)$ is zero, then there is some $u \in VW$ with $ur = 0$. We can write $u = st$ with $s \in V$ and $t \in W$, so $str = 0$. But this implies that $s(r/w) = 0$ in $W^{-1}R$ (because there is some $t \in W$ such that $str = 0$), and this means that $\frac{r}{w}$ $\frac{r}{w-1} = 0$.

(6) Minimal primes.

- (a) Let p be a minimal prime of R. Show that for any $a \in \mathfrak{p}$, there is some $u \notin \mathfrak{p}$ and $n \geq 1$ such that $ua^n = 0$.
- (b) Show that the set of minimal⁴ primes $Min(R)$ with the induced topology from $Spec(R)$ is Hausdorff.
- (c) Let $R = K[X_1, X_2, X_3, \ldots]/(\{X_i X_j \mid i \neq j\})$. Describe $\text{Min}(R)$ as a topological space.

 ${}^{4}\text{Min}(R)$ denotes the set of primes of R that are minimal. This is the same as $\text{Min}(0)$ in our notation of minimal primes of an ideal; this conflict of notation is standard.