DEFINITION: Let R be a ring and W a multiplicatively closed subset with $0 \notin W$. The localization $W^{-1}R$ is the ring with

• elements equivalence classes of $(r, w) \in R \times W$, with the class of (r, w) denoted as $\frac{r}{w}$.

• with equivalence relation $\frac{s}{u} = \frac{t}{v}$ if there is some $w \in W$ such that w(sv - tu) = 0,

- addition given by $\frac{s}{u} + \frac{t}{v} = \frac{sv + tu}{uv}$, and
- multiplication given by $\frac{s}{u}\frac{t}{v} = \frac{st}{uv}$.
- (If $0 \in W$, then $W^{-1}R := 0$, which by our convention is not a ring.)

DEFINITION: Let R be a ring.

- If $f \in R$ is nonnilpotent¹, then $R_f := \{1, f, f^2, \dots\}^{-1} R$.
- If $\mathfrak{p} \subseteq R$ is a prime ideal then $R_{\mathfrak{p}} := (R \setminus \mathfrak{p})^{-1}R$.
- The total quotient ring of R is $Frac(R) := \{w \in R \mid w \text{ is a nonzerodivisor}\}^{-1}R$.

For a ring R, multiplicative set $W \not\supseteq 0$, and an ideal I, we define

$$W^{-1}I := \left\{ \frac{a}{w} \in W^{-1}R \mid a \in I \right\}.$$

THEOREM: Let R be a ring and W be a multiplicatively closed subset. Then the map induced on Spec corresponding to the natural map $R \to W^{-1}R$ yields a homeomorphism into its image:

 $\operatorname{Spec}(W^{-1}R) \cong \{ \mathfrak{p} \in \operatorname{Spec}(R) \mid \mathfrak{p} \cap W = \varnothing \}.$

LEMMA: Let R be a ring and W be a multiplicatively closed subset.

- (1) For any ideal $I \subseteq R$, $W^{-1}I = I(W^{-1}R)$.
- (2) For any ideal $I \subseteq R$, $W^{-1}I \cap R = \{r \in R \mid \exists w \in W : wr \in I\}$.
- (3) For any ideal $J \subseteq W^{-1}R$, $W^{-1}(J \cap R) = J$.
- (4) For any prime ideal $\mathfrak{p} \subset R$ with $\mathfrak{p} \cap W = \emptyset$, $W^{-1}\mathfrak{p}$ is prime.
- (1) Computing localizations
 - (a) What is the natural ring homomorphism $R \to W^{-1}R$?
 - **(b)** Show that the kernel of $R \to W^{-1}R$ is ${}^{W}0 := \{r \in R \mid \exists w \in W : wr = 0\}$.
 - (c) If every element of W is a nonzerodivisor, explain why the equivalence relation on $W^{-1}R$ simplifies to $\frac{s}{u} = \frac{t}{v}$ if and only if sv = tu.
 - (d) If R is a domain, explain why Frac(R) is the usual fraction field of R.
 - (e) If R is a domain, explain why $W^{-1}R$ is a subring of the fraction field of R. Which subring?
 - (f) Let $\overline{R} = R/W_0$ and \overline{W} be the image of W in \overline{R} . Show that $W^{-1}R \cong \overline{W}^{-1}\overline{R}$.

¹If f is nilpotent, $0 \in \{1, f, f^2, ...\}$ so $R_f = 0$. ²If $W \cap \mathfrak{p} \ni a$, then $W^{-1}\mathfrak{p} \ni \frac{a}{a} = \frac{1}{1}$, so $W^{-1}\mathfrak{p} = W^{-1}R$ is the improper ideal!

(a) $r \mapsto \frac{r}{1}$.

- **(b)** $\frac{r}{1} = \frac{0}{1}$ if and only if $\exists w \in W : rw = w(1r 0) = 0$.
- (c) w(sv tu) = 0 and w a nonzerdivisor implies sv tu = 0; i.e., sv = tu.
- (d) In light of the above, it's just the definition.
- (e) The equivalence relation on the fractions is the same as that in the fraction field, so the map is injective; the operations are definitely the same. It is the subring consisting of fractions that can be written with denominator in W.
- (f) We define a map from $W^{-1}R \to \overline{W}^{-1}\overline{R}$ by $\frac{r}{w} \mapsto \frac{\overline{r}}{\overline{w}}$. It is clear from the construction that this is a surjective homomorphism. Suppose that $\frac{r}{w}$ is in the kernel, so $\frac{\overline{r}}{\overline{w}} = \frac{\overline{0}}{\overline{1}}$. This means that there is some $\overline{v} \in \overline{W}$ such that $\overline{vr} = \overline{0}$; i.e., $vr \in {}^{W}0$ for some $v \in W$. Then there is some $u \in W$ such that uvr = 0, but $uv \in W$, so $\frac{r}{w} = \frac{0}{1}$ in $W^{-1}R$.
- (2) Ideals in localizations: Let R be a ring and W a multiplicatively closed set.
 - (a) Use the Theorem to show that, if $f \in R$ is nonnilpotent, then

$$\operatorname{Spec}(R_f) \cong D(f) \subseteq \operatorname{Spec}(R).$$

(b) Use the Theorem to show that, if $\mathfrak{p} \subseteq R$ is prime, then

$$\operatorname{Spec}(R_{\mathfrak{p}}) \cong \{\mathfrak{q} \in \operatorname{Spec}(R) \mid \mathfrak{q} \subseteq \mathfrak{p}\} =: \Lambda(\mathfrak{p}).$$

Deduce that $R_{\mathfrak{p}}$ is always a *local* ring.

- (c) Draw³ a picture of Spec $\left(\frac{\mathbb{C}[X,Y]}{(XY)_{(x,y)}}\right)$.
- (d) Use Part (3) of the Lemma to show that every ideal of $W^{-1}R$ is of the form $W^{-1}I$ for some ideal $I \subseteq R$.
- (e) Use Part (3) of the Lemma to show that any localization of a Noetherian ring is Noetherian.
- (a) The condition p ∩ {1, f, f², ...} = Ø is equivalent to f ∉ p; i.e., f ∈ D(p).
 (b) The condition q ∩ (R \ p) = Ø is equivalent to q ⊆ p; i.e., q ∈ Λ(p). There is a unique
- maximal element in this set, namely \mathfrak{p} , so $R_{\mathfrak{p}}$ is local. (c)

(d) Clear.

- (e) Given an ideal of $W^{-1}R$, write it as $I(W^{-1}R)$ for some ideal I of R. Then $I = (f_1, \ldots, f_t)$ by Noetherianity, whence $I(W^{-1}R)$ is generated by the images $\frac{f_1}{1}, \ldots, \frac{f_t}{1}$.
- (3) Examples of localizations
 - (a) Describe as concretely as possible the rings \mathbb{Z}_2 and $\mathbb{Z}_{(2)}$ as defined above.
 - **(b)** Describe as concretely as possible the rings $K[X]_X$ and $K[X]_{(X)}$.
 - (c) Describe as concretely as possible the rings $K[X,Y]_X$ and $K[X,Y]_{(X)}$.
 - (d) Describe as concretely as possible the rings $\left(\frac{K[X,Y]}{(XY)}\right)_x$ and $\left(\frac{K[X,Y]}{(XY)}\right)_{(x)}$.

³Recall that Spec $(\frac{\mathbb{C}[X,Y]}{(XY)})$ consists of $\{(x),(y),(x,y-\alpha),(x-\beta,y) \mid \alpha,\beta \in \mathbb{C}\}.$

(e) Describe as concretely as possible $\left(\frac{K[X,Y]}{(X^2)}\right)_r$ and $\left(\frac{K[X,Y]}{(X^2)}\right)_{(r)}$.

(a)
$$\mathbb{Z}_{2} = \{a/b \in \mathbb{Q} \mid b = 2^{n}\}$$
 and $\mathbb{Z}_{(2)} = \{a/b \in \mathbb{Q} \mid 2 \nmid b\}$.
(b) $K[X]_{X} = \{f/g \in K(X) \mid g = X^{n}\}$ and $K[X]_{(X)} = \{f/g \in K(X) \mid X \nmid g\}$.
(c) $K[X,Y]_{X} = \{f/g \in K(X,Y) \mid g = X^{n}\}$
and $K[X,Y]_{(X)} = \{f/g \in K(X,Y) \mid X \nmid g\}$.
(d) $\left(\frac{K[X,Y]}{(XY)}\right)_{x} \cong K[X,X^{-1}]$ and $\left(\frac{K[X,Y]}{(XY)}\right)_{(x)} \cong K(Y)$.
(e) $\left(\frac{K[X,Y]}{(X^{2})}\right)_{x} \cong K[Y]$ and $\left(\frac{K[X,Y]}{(X^{2})}\right)_{(x)} \cong K(Y)[X]/(X^{2})$.

(4) Prove the Lemma and the Theorem.

Lemma:

(a) For the containment \subseteq , we have $\frac{a}{w} = \frac{a}{1}\frac{1}{w}$. For the other, given $\sum_{i} \frac{a_{i}}{1}\frac{r_{i}}{w_{i}}$, take w = $w_1 \cdots w_t$ and w'_i to be the product of all w's except w_i ; then

$$\sum_{i} \frac{a_i}{1} \frac{r_i}{w_i} = \sum_{i} \frac{a_i}{1} \frac{w'_i r_i}{w} = \sum_{i} \frac{a_i w'_i r_i}{w} \in W^{-1}I.$$

- (b) We have r ∈ W⁻¹I ∩ R if and only if ^r/₁ ∈ W⁻¹I, so ^r/₁ = ^a/_w some a ∈ I, w ∈ W. Then there is some u ∈ W such that u(wr − a) = 0, so (uw)r ∈ I, as claimed.
 (c) Let j = ^r/_w ∈ J. Then ^r/₁ = wj ∈ J ∩ R, ^r/_w = ¹/_w ^r/₁ ∈ W⁻¹(J ∩ R). Conversely, if ^a/_w ∈ W⁻¹(J ∩ R) so a ∈ J ∩ R, then ^a/₁ ∈ J, and ^a/_w = ¹/_w ^a/₁ ∈ J.
 (d) Let ^a/_u, ^b/_v ∈ W⁻¹R, and ^{ab}/_{uv} ∈ W⁻¹p. Then there are some w ∈ W and p ∈ p such that ^{ab}/_{uv} = ^p/_w, so there is t ∈ W with t(wab − uvp) = 0, so (tw)ab ∈ p. Since W ∩ p = Ø, tw ∉ p so a ∈ p or b ∈ p and hence ^a/_a ∈ W⁻¹p or ^b/_b ∈ W⁻¹p $\overline{tw} \notin \mathfrak{p}$ so $a \in \mathfrak{p}$ or $b \in \mathfrak{p}$, and hence $\frac{a}{u} \in W^{-1}\mathfrak{p}$ or $\frac{b}{v} \in W^{-1}\mathfrak{p}$.

Theorem: Suppose that q is a prime ideal in $W^{-1}R$ and $q \cap R = p$. Then $W^{-1}p =$ $W^{-1}(\mathfrak{q} \cap R) = \mathfrak{q}$. This shows that the only ideal (in particular, the only prime ideal) that contracts to p is $W^{-1}p$, so this map is injective. Since $W^{-1}p$ is prime for any $p \cap W = \emptyset$, and is the bogus ideal otherwise, the image is exactly the primes with $\mathfrak{p} \cap W = \varnothing$. To see that it induces a homeomorphism onto its image, it suffices to show that the image of a closed set is closed. One checks from the definition that the image of $V(W^{-1}I)$ is $V(I) \cap \{ \mathfrak{p} \in \operatorname{Spec}(R) \mid \mathfrak{p} \cap W = \emptyset \}.$

(5) Prove the following LEMMA: If V, W are multiplicatively closed sets, then $(VW)^{-1}R \cong$ $\left(\frac{V}{1}\right)^{-1}(W^{-1}R)$, where $\left(\frac{V}{1}\right)^{-1}$ is the image of V in $W^{-1}R$.

Check that the map $(r/w)/(v/1) \mapsto r/(wv)$ is an isomorphism: it is clearly a ring homomorphism, and clearly surjective. If r/(wv) is zero, then there is some $u \in VW$ with ur = 0. We can write u = st with $s \in V$ and $t \in W$, so str = 0. But this implies that s(r/w) = 0 in $W^{-1}R$ (because there is some $t \in W$ such that str = 0), and this means that (r/w)/(v/1) = 0.

(6) Minimal primes.

- (a) Let \mathfrak{p} be a minimal prime of R. Show that for any $a \in \mathfrak{p}$, there is some $u \notin \mathfrak{p}$ and $n \ge 1$ such that $ua^n = 0$.
- (b) Show that the set of minimal⁴ primes Min(R) with the induced topology from Spec(R) is Hausdorff.
- (c) Let $R = K[X_1, X_2, X_3, \dots]/(\{X_i X_j \mid i \neq j\})$. Describe Min(R) as a topological space.

 $^{{}^{4}}Min(R)$ denotes the set of primes of R that are minimal. This is the same as Min(0) in our notation of minimal primes of an ideal; this conflict of notation is standard.