DEFINITION: Let R be a ring and W a multiplicatively closed subset with $0 \notin W$. The localization $W^{-1}R$ is the ring with

• elements equivalence classes of $(r, w) \in R \times W$, with the class of (r, w) denoted as $\frac{r}{w}$.

• with equivalence relation $\frac{s}{u} = \frac{t}{v}$ if there is some $w \in W$ such that w(sv - tu) = 0,

- addition given by $\frac{s}{u} + \frac{t}{v} = \frac{sv + tu}{uv}$, and
- multiplication given by $\frac{s}{u}\frac{t}{v} = \frac{st}{uv}$.
- (If $0 \in W$, then $W^{-1}R := 0$, which by our convention is not a ring.)

DEFINITION: Let R be a ring.

- If $f \in R$ is nonnilpotent¹, then $R_f := \{1, f, f^2, \dots\}^{-1} R$.
- If $\mathfrak{p} \subseteq R$ is a prime ideal then $R_{\mathfrak{p}} := (R \setminus \mathfrak{p})^{-1}R$.
- The total quotient ring of R is $Frac(R) := \{w \in R \mid w \text{ is a nonzerodivisor}\}^{-1}R$.

For a ring R, multiplicative set $W \not\supseteq 0$, and an ideal I, we define

$$W^{-1}I := \left\{ \frac{a}{w} \in W^{-1}R \mid a \in I \right\}.$$

THEOREM: Let R be a ring and W be a multiplicatively closed subset. Then the map induced on Spec corresponding to the natural map $R \to W^{-1}R$ yields a homeomorphism into its image:

 $\operatorname{Spec}(W^{-1}R) \cong \{ \mathfrak{p} \in \operatorname{Spec}(R) \mid \mathfrak{p} \cap W = \varnothing \}.$

LEMMA: Let R be a ring and W be a multiplicatively closed subset.

- (1) For any ideal $I \subseteq R$, $W^{-1}I = I(W^{-1}R)$.
- (2) For any ideal $I \subseteq R$, $W^{-1}I \cap R = \{r \in R \mid \exists w \in W : wr \in I\}$.
- (3) For any ideal $J \subseteq W^{-1}R$, $W^{-1}(J \cap R) = J$.
- (4) For any prime ideal $\mathfrak{p} \subset R$ with $\mathfrak{p} \cap W = \emptyset$, $W^{-1}\mathfrak{p}$ is prime.

(1) Computing localizations

- (a) What is the natural ring homomorphism $R \to W^{-1}R$?
- (b) Show that the kernel of $R \to W^{-1}R$ is ${}^{W}0 := \{r \in R \mid \exists w \in W : wr = 0\}.$
- (c) If every element of W is a nonzerodivisor, explain why the equivalence relation on $W^{-1}R$ simplifies to $\frac{s}{u} = \frac{t}{v}$ if and only if sv = tu.
- (d) If R is a domain, explain why Frac(R) is the usual fraction field of R.
- (e) If R is a domain, explain why $W^{-1}R$ is a subring of the fraction field of R. Which subring?
- (f) Let $\overline{R} = R/W_0$ and \overline{W} be the image of W in \overline{R} . Show that $W^{-1}R \cong \overline{W}^{-1}\overline{R}$.

¹If f is nilpotent, $0 \in \{1, f, f^2, ...\}$ so $R_f = 0$. ²If $W \cap \mathfrak{p} \ni a$, then $W^{-1}\mathfrak{p} \ni \frac{a}{a} = \frac{1}{1}$, so $W^{-1}\mathfrak{p} = W^{-1}R$ is the improper ideal!

(2) Ideals in localizations: Let R be a ring and W a multiplicatively closed set.
(a) Use the Theorem to show that, if f ∈ R is nonnilpotent, then

$$\operatorname{Spec}(R_f) \cong D(f) \subseteq \operatorname{Spec}(R).$$

(b) Use the Theorem to show that, if $\mathfrak{p} \subseteq R$ is prime, then

$$\operatorname{Spec}(R_{\mathfrak{p}}) \cong \{\mathfrak{q} \in \operatorname{Spec}(R) \mid \mathfrak{q} \subseteq \mathfrak{p}\} =: \Lambda(\mathfrak{p}).$$

Deduce that R_{p} is always a *local* ring.

- (c) Draw³ a picture of Spec $\left(\frac{\mathbb{C}[X,Y]}{(XY)}\right)$.
- (d) Use Part (3) of the Lemma to show that every ideal of $W^{-1}R$ is of the form $W^{-1}I$ for some ideal $I \subseteq R$.
- (e) Use Part (3) of the Lemma to show that any localization of a Noetherian ring is Noetherian.
- (3) Examples of localizations
 - (a) Describe as concretely as possible the rings \mathbb{Z}_2 and $\mathbb{Z}_{(2)}$ as defined above.
 - (b) Describe as concretely as possible the rings $K[X]_X$ and $K[X]_{(X)}$.
 - (c) Describe as concretely as possible the rings $K[X,Y]_X$ and $K[X,Y]_{(X)}$.
 - (d) Describe as concretely as possible the rings $\left(\frac{K[X,Y]}{(XY)}\right)_x$ and $\left(\frac{K[X,Y]}{(XY)}\right)_{(x)}$.

(e) Describe as concretely as possible $\left(\frac{K[X,Y]}{(X^2)}\right)_x$ and $\left(\frac{K[X,Y]}{(X^2)}\right)_{(x)}$.

- (4) Prove the Lemma and the Theorem.
- (5) Prove the following LEMMA: If V, W are multiplicatively closed sets, then $(VW)^{-1}R \cong (\frac{V}{1})^{-1}(W^{-1}R)$, where $(\frac{V}{1})^{-1}$ is the image of V in $W^{-1}R$.
- (6) Minimal primes.
 - (a) Let \mathfrak{p} be a minimal prime of R. Show that for any $a \in \mathfrak{p}$, there is some $u \notin \mathfrak{p}$ and $n \ge 1$ such that $ua^n = 0$.
 - (b) Show that the set of minimal⁴ primes Min(R) with the induced topology from Spec(R) is Hausdorff.
 - (c) Let $R = K[X_1, X_2, X_3, \dots]/(\{X_i X_j \mid i \neq j\})$. Describe Min(R) as a topological space.

³Recall that Spec $\left(\frac{\mathbb{C}[X,Y]}{(XY)}\right)$ consists of $\{(x),(y),(x,y-\alpha),(x-\beta,y) \mid \alpha,\beta \in \mathbb{C}\}$.

 $^{{}^{4}}Min(R)$ denotes the set of primes of R that are minimal. This is the same as Min(0) in our notation of minimal primes of an ideal; this conflict of notation is standard.