DEFINITION: A ring is **local** if it has a unique maximal ideal. We write (R, \mathfrak{m}) for a local ring to denote the ring R and the maximal ideal \mathfrak{m} ; we many also write (R, \mathfrak{m}, k) to indicate the residue field $k := R/\mathfrak{m}$.

GENERAL NAK: Let R be a ring, I an ideal, and M be a finitely generated module. If IM = M, then there is some $a \in R$ such that $a \equiv 1 \mod I$ and aM = 0.

LOCAL NAK 1: Let (R, \mathfrak{m}) be a local ring and M be a finitely generated module. If $M = \mathfrak{m}M$, then M = 0.

LOCAL NAK 2: Let (R, \mathfrak{m}) be a local ring and M be a finitely generated module. Let N be a submodule of M. Then $M = N + \mathfrak{m}M$ if and only if M = N.

LOCAL NAK 3: Let (R, \mathfrak{m}, k) be a local ring and M be a finitely generated module. Then a set of elements $S \subseteq M$ generates M if and only if the image of S in $M/\mathfrak{m}M$ generates $M/\mathfrak{m}M$ as a k-vector space.

DEFINITION: Let (R, \mathfrak{m}, k) be a local ring and M be a finitely generated module. A set of elements S of M is a **minimal generating set** for M if the image of S in $M/\mathfrak{m}M$ is a basis for $M/\mathfrak{m}M$ as a k-vector space.

(1) Local rings.

- (a) Show that for a ring R the following are equivalent:
 - R is a local ring.
 - The set of all nonunits forms an ideal.
 - The set of all nonunits is closed under addition.
- **(b)** Show that if A is a domain then A[X] is *not* a local ring.
- (c) Show that if K is a field, the power series ring $R = K[X_1, \ldots, X_n]$ is a local ring.
- (d) Let $p \in \mathbb{Z}$ be a prime number, and $\mathbb{Z}_{(p)} \subseteq \mathbb{Q}$ be the set of rational numbers that can be written with denominator *not* a multiple of p. Show that $(\mathbb{Z}_{(p)}, p\mathbb{Z}_{(p)})$ is a local ring.
- (e) Show that any quotient of a local ring is also a local ring.
 - (a) Since any element times a nonunit is a nonunit, the last two are equivalent. Recall that an element is a unit if and only if it is not in any maximal ideal. So, if (R, \mathfrak{m}) is local, the nonunits are the elements of \mathfrak{m} , which is an ideal; conversely, if the nonunits form an ideal, then this ideal must be the unique maximal ideal.
 - (b) X and X + 1 are nonunits, but 1 = (X + 1) X is a unit.
 - (c) The set of nonunits is the elements with zero constant term, which is the ideal (X_1, \ldots, X_n) .
 - (d) First, check that this is a ring. Then note that the units in this ring are the fractions a/b with $p \nmid a, b$, which is complement of the ideal $p\mathbb{Z}_{(p)}$.
 - (e) This follows from the Lattice Isomorphism Theorem.

(2) General NAK implies Local NAKs

(a) Show that General NAK implies Local NAK 1.

- **(b)** Briefly¹ explain why Local NAK 1 implies Local NAK 2.
- (c) Briefly² explain why Local NAK 2 implies Local NAK 3.
- (d) Use Local NAK 3 to briefly explain why a minimal generating set is a generating set, and that, in this setting, any generating set contains a minimal generating set.
 - (a) If $\mathfrak{m}M = M$, then by General NAK, there is some $a \in \mathfrak{m}$ such that $a \equiv 1 \mod \mathfrak{m}$ and aM = 0. But a must be a unit, so M = 0!
 - **(b)** Same as the graded case: apply NAK 1 to M/N.
 - (c) Same as the graded case: apply NAK 2 to $N = \sum_{s \in S} Rs$.
 - (d) Same as the graded case: a k-basis for $M/\mathfrak{m}M$ is a k-spanning set for $M/\mathfrak{m}M$, and any k-spanning set for $M/\mathfrak{m}M$ contains a k-basis.
- (3) Proof of General NAK: Let $M = \sum_{i=1}^{n} Rm_i$. Set v to be the row vector $[m_1, \ldots, m_n]$.
 - (a) Suppose that IM = M. Explain why there is an $n \times n$ matrix A with entries in I such that vA = v.
 - **(b)** Apply a TRICK and complete the proof.
 - (a) Each m_i is an element of IM, so we can write m_i = ∑_j b_jn_j with n_j ∈ M and b_j ∈ I. We can then write n_j as a linear combination of the m_i's. Combining all together, we can write m_i = ∑_j a_jm_j with a_j ∈ I. These linear combinations are the columns of a matrix A as desired.
 - (b) By the Eigenvector trick, det(A − 1) kills v, so kills M. Going mod I we have det(A − 1) ≡ det(−1) ≡ ±1; up to sign, a = det(A − 1) is the element we seek.
- (4) Let (R, \mathfrak{m}) be a local ring, $f \in R$ not a unit, and M be a nonzero finitely generated module. Show that there is some element of M that is *not* a multiple of f.

Suppose otherwise. Then M = fM. We have $f \in \mathfrak{m}$, so $M = fM \subseteq \mathfrak{m}M \subseteq M$, so $M = \mathfrak{m}M$. But by NAK, we then have M = 0, a contradiction.

- (5) Applications of NAK.
 - (a) Let R be a ring and I be a finitely generated ideal. Show that if $I^2 = I$ then there is some idempotent e such that I = (e).
 - (b) Find a counterexample to (a) if *I* is *not* assumed to be finitely generated.
 - (c) Let (R, \mathfrak{m}) be a Noetherian local ring and M be a finitely generated module. Show that $\bigcap_{n>1} \mathfrak{m}^n M = 0.$
 - (d) Find a counterexample to (c) if (R, \mathfrak{m}) is still Noetherian local but M is not finitely generated.
 - (e) Find a counterexample to (c) if (R, \mathfrak{m}) with M = R, \mathfrak{m} is a maximal ideal, but R is not necessarily Noetherian and local.
 - (f) Let R be a Noetherian ring, and M a finitely generated module. Let $\phi : M \to M$ be a surjective R-module homomorphism. Show³ that ϕ must also be injective.
 - (g) Let (R, \mathfrak{m}) be a local ring. Suppose that $R_{red} := R/\sqrt{0}$ is a domain, and that there is some $f \in R$ such that R/fR is reduced (and nonzero). Show that R is reduced (and hence a domain).

¹Reuse an old argument in a similar setting.

²It's déjà vu all over again.

³Hint: Take a page from the 818 playbook and give M an R[X]-module structure.