
§5.20: LOCAL RINGS AND NAK

DEFINITION: A ring is local if it has a unique maximal ideal. We write (R,m) for a local ring to
denote the ring R and the maximal ideal m; we many also write (R,m, k) to indicate the residue field
k := R/m.

GENERAL NAK: Let R be a ring, I an ideal, and M be a finitely generated module. If IM = M ,
then there is some a ∈ R such that a ≡ 1 mod I and aM = 0.

LOCAL NAK 1: Let (R,m) be a local ring and M be a finitely generated module. If M = mM ,
then M = 0.

LOCAL NAK 2: Let (R,m) be a local ring and M be a finitely generated module. Let N be a
submodule of M . Then M = N +mM if and only if M = N .

LOCAL NAK 3: Let (R,m, k) be a local ring and M be a finitely generated module. Then a set
of elements S ⊆ M generates M if and only if the image of S in M/mM generates M/mM as a
k-vector space.

DEFINITION: Let (R,m, k) be a local ring and M be a finitely generated module. A set of elements
S of M is a minimal generating set for M if the image of S in M/mM is a basis for M/mM as a
k-vector space.

(1)(1) Local rings.
(a)(a) Show that for a ring R the following are equivalent:

• R is a local ring.
• The set of all nonunits forms an ideal.
• The set of all nonunits is closed under addition.

(b)(b) Show that if A is a domain then A[X] is not a local ring.
(c)(c) Show that if K is a field, the power series ring R = KJX1, . . . , XnK is a local ring.
(d)(d) Let p ∈ Z be a prime number, and Z(p) ⊆ Q be the set of rational numbers that can be

written with denominator not a multiple of p. Show that (Z(p), pZ(p)) is a local ring.
(e)(e) Show that any quotient of a local ring is also a local ring.

(a)(a) Since any element times a nonunit is a nonunit, the last two are equivalent. Recall that
an element is a unit if and only if it is not in any maximal ideal. So, if (R,m) is local,
the nonunits are the elements of m, which is an ideal; conversely, if the nonunits form
an ideal, then this ideal must be the unique maximal ideal.

(b)(b) X and X + 1 are nonunits, but 1 = (X + 1)−X is a unit.
(c)(c) The set of nonunits is the elements with zero constant term, which is the ideal

(X1, . . . , Xn).
(d)(d) First, check that this is a ring. Then note that the units in this ring are the fractions a/b

with p - a, b, which is complement of the ideal pZ(p).
(e)(e) This follows from the Lattice Isomorphism Theorem.

(2)(2) General NAK implies Local NAKs
(a)(a) Show that General NAK implies Local NAK 1.



(b)(b) Briefly1 explain why Local NAK 1 implies Local NAK 2.
(c)(c) Briefly2 explain why Local NAK 2 implies Local NAK 3.
(d)(d) Use Local NAK 3 to briefly explain why a minimal generating set is a generating set, and

that, in this setting, any generating set contains a minimal generating set.

(a)(a) If mM = M , then by General NAK, there is some a ∈ m such that a ≡ 1modm and
aM = 0. But a must be a unit, so M = 0!

(b)(b) Same as the graded case: apply NAK 1 to M/N .
(c)(c) Same as the graded case: apply NAK 2 to N =

∑
s∈S Rs.

(d)(d) Same as the graded case: a k-basis for M/mM is a k-spanning set for M/mM , and any
k-spanning set for M/mM contains a k-basis.

(3)(3) Proof of General NAK: Let M =
∑n

i=1Rmi. Set v to be the row vector [m1, . . . ,mn].
(a)(a) Suppose that IM = M . Explain why there is an n× n matrix A with entries in I such that

vA = v.
(b)(b) Apply a TRICK and complete the proof.

(a)(a) Each mi is an element of IM , so we can write mi =
∑

j bjnj with nj ∈ M and bj ∈ I .
We can then write nj as a linear combination of the mi’s. Combining all together, we
can write mi =

∑
j ajmj with aj ∈ I . These linear combinations are the columns of a

matrix A as desired.
(b)(b) By the Eigenvector trick, det(A− 1) kills v, so kills M . Going mod I we have

det(A− 1) ≡ det(−1) ≡ ±1; up to sign, a = det(A− 1) is the element we seek.

(4) Let (R,m) be a local ring, f ∈ R not a unit, and M be a nonzero finitely generated module.
Show that there is some element of M that is not a multiple of f .

Suppose otherwise. Then M = fM . We have f ∈ m, so M = fM ⊆ mM ⊆ M , so
M = mM . But by NAK, we then have M = 0, a contradiction.

(5) Applications of NAK.
(a) Let R be a ring and I be a finitely generated ideal. Show that if I2 = I then there is some

idempotent e such that I = (e).
(b) Find a counterexample to (a) if I is not assumed to be finitely generated.
(c) Let (R,m) be a Noetherian local ring and M be a finitely generated module. Show that⋂

n≥1m
nM = 0.

(d) Find a counterexample to (c) if (R,m) is still Noetherian local but M is not finitely gener-
ated.

(e) Find a counterexample to (c) if (R,m) with M = R, m is a maximal ideal, but R is not
necessarily Noetherian and local.

(f) Let R be a Noetherian ring, and M a finitely generated module. Let φ : M → M be a
surjective R-module homomorphism. Show3 that φ must also be injective.

(g) Let (R,m) be a local ring. Suppose that Rred := R/
√
0 is a domain, and that there is some

f ∈ R such that R/fR is reduced (and nonzero). Show that R is reduced (and hence a
domain).

1Reuse an old argument in a similar setting.
2It’s déjà vu all over again.
3Hint: Take a page from the 818 playbook and give M an R[X]-module structure.


