
§4.19: SPECTRUM OF A RING

FORMAL NULLSTELLENSATZ: Let R be a ring, I an ideal, and f ∈ R. Then V (f) ⊇ V (I) if
and only if f ∈

√
I .

COROLLARY 1: Let R be a ring. There is a bijection

{radical ideals in R} ←→ {closed subsets of Spec(R)}.

DEFINITION: Let R be a ring and I an ideal. A minimal prime of I is a prime p that contains I ,
and is minimal among primes containing I . We write Min(I) for the set of minimal primes of I .

LEMMA: Every prime that contains I contains a minimal prime of I .

COROLLARY 2: Let R be a ring and I be an ideal. Then
√
I =

⋂
p∈Min(I)

p.

DEFINITION: A subset W of a ring R is multiplicatively closed if 1 ∈ W and u, v ∈ W implies
uv ∈ W .

PROPOSITION: Let R be a ring and W be a multiplicatively closed subset. Then every ideal I
such that I ∩W = ∅ is contained in a prime ideal p such that p ∩W = ∅.

(1)(1) Proof of Formal Nullstellensatz and Corollaries.
(a)(a) Show the direction (⇐) of Formal Nullstellensatz.
(b)(b) Verify that W = {fn | n ≥ 0} is a multiplicatively closed set. Then apply the Proposi-

tion to prove the direction (⇒) of Formal Nullstellesatz.
(c)(c) Prove Corollary 1.
(d)(d) Prove the Lemma.
(e)(e) Prove Corollary 2.
(f)(f) What does Corollary 2 say in the special case I = (0)?

(a)(a) Suppose that f ∈
√
I , so fn ∈ I . If p ∈ V (I), then I ⊆ p, and fn ∈ p implies

f ∈ p, so p ∈ V (f).
(b)(b) Yes, it is a multiplicatively closed set. If f /∈

√
I , then W ∩ I = ∅, so there is some

prime p such that W ∩ p = ∅. In particular, f /∈ p, so V (f) 6⊇ V (I).
(c)(c) We map a radical ideal I to the closed set V (I). This is surjective since V (J) =

V (
√
J). If I, J are distinct radical ideals, then take some f ∈ J r I . Then V (f)

contains V (I) but not V (J), so V (I) 6= V (J).
(d)(d) Usual Zorn’s Lemma argument.
(e)(e) If f ∈

√
I , then f ∈ V (p) for all p containing I , so f is in every minimal prime of

I . On the other hand, if f is in every minimal prime of I , then it is in every prime
containing I , so V (f) ⊇ V (I), which implies f ∈

√
I .

(f)(f) An element is nilpotent if and only if it is in every minimal prime of the ring.



(2)(2) Use the Formal Nullstellensatz to fill in the blanks:

f is nilpotent ⇐⇒ V (f) = ⇐⇒ D(f) = .

What property replaces “nilpotent” if you swap the blanks for V and D above?

f is nilpotent ⇐⇒ V (f) = Spec(R) ⇐⇒ D(f) = ∅.

The opposite property is unit.

(3)(3) Prove1 the Proposition.

Given an increasing union of ideals that don’t intersect I , the union is an ideal and does
not intersect I , so by Zorn’s Lemma, there is an ideal maximal among those that don’t
intersect I; call it J . Let ab ∈ J with a, b /∈ J . Then (J + (a)) ∩W and (J + (b)) ∩W
are nonempty. Say u, v are elements in the respective intersections. Then u = j1 + ar1
and v = j2 + br2, and uv = j1j2 + j1br2 + j2ar2 + abr1r2 ∈ J .

(4) Let R be a ring. Show2 that Spec(R) is connected as a topological space if and only if
R 6∼= S × T for rings3 S, T .

First, suppose that R ∼= S × T . Then any prime ideal of R is of the form p × T for
p ∈ Spec(S) or S × q for q ∈ Spec(T ). So, as sets, there is a bijection Spec(R) ↔
Spec(S)

∐
Spec(T ). Moveover, this is a homeomorphism: the ideals in S × T are

of the form I × J , and V (I × J) ⊆ Spec(S × T ) corresponds to V (I)
∐

V (J) ⊆
Spec(S)

∐
Spec(T ), so this is the disjoint union topology. In particular, Spec(S) and

Spec(T ) are form a disconnection.
From above, we know that Spec(S × T ) ∼= Spec(S)

∐
Spec(T ) so it suffices to show

that Spec(R) disconnected implies that R has a nontrivial idempotent. Applying the
definition of disconnected, there exists some closed sets V (I), V (J) such that V (I) ∪
V (J) = Spec(R) and V (I) ∩ V (J) = ∅. Thus

√
I + J = R, so I + J = R and√

I ∩ J =
√
0, so I∩J consists of nilpotents. By CRT, we have R/(I∩J) ∼= R/I×R/J .

Set N = I ∩ J . We have that there is a nontrivial idempotent in R/N but e, 1− e /∈ N .
So there is some e ∈ R such that e−e2 ∈ N so en(1−e)n = 0 for some n. Set I ′ = (en)
and J ′ = (1 − e)n. We claim that I ′ + J ′ = R and I ′ ∩ J ′ = 0. Indeed, in R/I ′, e is
nilpotent, so 1− e is a unit, as is (1 − e)n. Thus, we can write (1 − e)nu = 1 + enf
for some u, f ∈ R, and hence 1 ∈ I ′ + J ′; then I ′ ∩ J ′ = I ′J ′ = 0. By CRT we have
R ∼= R/I ′×R/J ′. Finally, it remains to note that I ′, J ′ 6= 0 to see that this is proper: we
have 0 6= e = e2 = · · · = en in R/N , so we must have en 6= 0 and likewise (1−e)n 6= 0.

1Hint: Take an ideal maximal among those that don’t intersect W .
2Start with the (⇒) direction. For the other direction, use CRT.
3Recall that the zero ring is not a ring.


