
§4.17: STRONG NULLSTELLENSATZ

STRONG NULLSTELLENSATZ: Let K be an algebraically closed field, and R = K[X1, . . . , Xn] be
a polynomial ring. Let I ⊆ R be an ideal and f ∈ R a polynomial. Then

f vanishes at every point of Z(I) if and only if f ∈
√
I .

DEFINITION: Let K be a field and R = K[X1, . . . , Xn]. A subvariety of Kn is a set of the form
Z(S) for some set of polynomials S ⊆ R; i.e., a solution set of some system of polynomial equations.

COROLLARY: Let K be an algebraically closed field. There is a bijection

{radical ideals in K[X1, . . . , Xn]} ←→ {subvarieties of Kn}.

(1)(1) Proof of Strong Nullstellensatz:
(a)(a) Show that Z(I) = Z(

√
I), and deduce the (⇐) direction.

(b)(b) Let Y be an extra indeterminate. Show that f vanishes on Z(I) implies that

Z
(
I + (Y f − 1)

)
= ∅ in Kn+1.

(c)(c) What does the Nullstellensatz have to say about that?
(d)(d) Apply the R-algebra homomorphism φ : R[Y ] → frac(R) given by φ(Y ) = 1

f
and clear

denominators.

(a)(a) Since I ⊆
√
I , we have Z(

√
I) ⊆ Z(I). On the other hand, if α ∈ Z(I) and fn ∈ I ,

then fn(α) = 0, so f(α) = 0, so α ∈ Z(
√
I). In particular, the (⇐) direction of the

statement holds.
(b)(b) If there was a solution (α, a), this would mean α ∈ Z(I) and af(α) − −1 = 0, so

f(α) 6= 0, contradicting that α ∈ Z(f).
(c)(c) We can write 1 =

∑
i ri(X, Y )gi(X)+ s(X, Y )(Y f(X)−1) for some ri, s ∈ R[Y ] and

gi ∈ I .
(d)(d) We get 1 =

∑
i ri(X, 1/f)gi(X) + s(X, 1/f)(1/f · f(X) − 1). The last term dies so

1 =
∑

i ri(X, 1/f)gi(X). We can clear denominators to get fn =
∑
r′i(X)gi(X) in R,

so fn ∈ I .

(2)(2) Strong Nullstellensatz warmup:
(a)(a) Consider the ideal I = (X2 + Y 2) ∈ R[X, Y ] and f = X . Discuss the hypotheses and

conclusion of Strong Nullstellensatz in this example.
(b)(b) Show that1 no power of F = X2 + Y 2 + Z2 is in the ideal

I = (X3 − Y 2Z, Y 7 −XZ3, 3X5 −XY Z − 2Z19) in the ring C[X, Y, Z].

(a)(a) Z(I) = {(0, 0)} and X vanishes along Z(I), but (X2 +Y 2) is prime and hence radical.
The conclusion of Strong Nullstellensatz fails. Of course, R is not algebraically closed.

(b)(b) F (1, 1, 1) = 3 6= 0 but (1, 1, 1) ∈ Z(I), since it is in the zero-set of each generator.

(3)(3) Prove the Corollary.

1Hint: You just need to find one point. One, one, one. . .



We have a map from radical ideals to subvarieities given by I 7→ Z(I). This is surjective by
definition and the first part of the proof of Strong Nullstellensatz. It is injective too: if I and
J are distinct radical ideals, without loss of generality there is some f ∈ J such that f /∈

√
I;

then f(α) 6= 0 for some α ∈ Z(I), so Z(I) 6⊆ Z(J).

(4)(4) Let R = C[T ] be a polynomial ring. In this problem, we will show that the ideal of C-algebraic
relations on the elements {T 2, T 3, T 4} is I = (X2

1 −X3, X
2
2 −X1X3).

(a)(a) Let φ : C[X1, X2, X3]→ C[T ] be the C-algebra map X1 7→ T 2, X2 7→ T 3, X3 7→ T 4. Show
that I ⊆ ker(φ).

(b)(b) Show thatZ(I) ⊆ {(λ2, λ3, λ4) ∈ C3 | λ ∈ C)} ⊆ Z(ker(φ)), and deduce that ker(φ) ⊆
√
I .

(c)(c) Show that I is prime2, and complete the proof.

(a)(a) The generators map to 0 under φ.
(b)(b) For the first containment, let (α, β, γ) ∈ Z(I). From the first equation, we can write

γ = α2. From the second, we have β2 = α3. If α = 0, we must have (0, 0, 0). Otherwise,
α has two square roots. Take λ to be one of these. Then α = λ2 and β2 = λ6. This
means β = ±λ3. If β = −λ3, replace λ by −λ; this does not change α = λ2 or γ = λ4.
So, we obtain λ such that (α, β, γ) = (λ2, λ3, λ4).
For the second, if F (X1, X2, X3) ∈ ker(φ), then F (T 2, T 3, T 4) = 0, so
F (λ2, λ3, λ4) = 0.

(c)(c) Using the first relation and an isomorphism theorem,
C[X1, X2, X3]/I ∼= C[X1, X2]/(X

2
2 −X3

1 ). The element X2
2 − X3

1 is irreducible by
Eisenstein’s criterion, so I is prime.

(5) Let K be an algebraically closed field and R = K

[
X11 X12

X21 X22

]
be a polynomial ring. Use the

Strong Nullstellensatz to show that any polynomial F (X11, X12, X21, X22) that vanishes on every

matrix of rank at most one is a multiple of det
[
X11 X12

X21 X22

]
.

(6) We say that a subvariety of Kn is irreducible if it cannot be written as a union of two proper
subvarities. Show that the bijection from the Corollary restricts to a bijection

{prime ideals in K[X1, . . . , Xn]} ←→ {irreducible subvarieties of Kn}.

Let I be a radical ideal. We need to show that Z(I) is irreducible if and only if I is prime.
Suppose that I is not prime, so one has f, g /∈ I with fg ∈ I . Since I is radical, f, g /∈

√
I ,

so Z(f),Z(g) 6⊇ Z(I). This means that Z(I + (f)) and Z(I + (g)) are proper subvarieties
of Z(I). But α ∈ Z(I) and fg ∈ I implies f(α)g(α) = 0 so f(α) = 0 or g(α) = 0, which
means Z(I) = Z(I + (f)) ∪ Z(I + (g)).

Conversely, suppose that Z(I) = Z(J1) ∪ Z(J2), with J1, J2 radical and not equal to I .
Since Z(I) ⊇ Z(Ji) we have Ji % I . We can take f ∈ J1 r J2 and g ∈ J2 r J1. Since
f(α) = 0 for all α ∈ Z(J1), g(α) = 0 for all α ∈ Z(J2), and Z(I) = Z(J1) ∪ Z(J2), we
have fg(α) = 0 for all α ∈ Z(I), so fg ∈ I , and I is not prime.

2Show C[X1, X2, X3]/I is a domain by simplifying the quotient.



(7) Use the Strong Nullstellensatz to show that, in a finitely generated algebra over an algebrically
closed field, every radical ideal can be written as an intersection of maximal ideals.


