STRONG NULLSTELLENSATZ: Let K be an algebraically closed field, and $R = K[X_1, \ldots, X_n]$ be a polynomial ring. Let $I \subseteq R$ be an ideal and $f \in R$ a polynomial. Then

f vanishes at every point of $\mathcal{Z}(I)$ if and only if $f \in \sqrt{I}$.

DEFINITION: Let K be a field and $R = K[X_1, \ldots, X_n]$. A subvariety of K^n is a set of the form $\mathcal{Z}(S)$ for some set of polynomials $S \subseteq R$; i.e., a solution set of some system of polynomial equations.

COROLLARY: Let K be an algebraically closed field. There is a bijection

{radical ideals in $K[X_1, \ldots, X_n]$ } \longleftrightarrow {subvarieties of K^n }.

- (1) Proof of Strong Nullstellensatz:
 - (a) Show that $\mathcal{Z}(I) = \mathcal{Z}(\sqrt{I})$, and deduce the (\Leftarrow) direction.
 - (b) Let Y be an extra indeterminate. Show that f vanishes on $\mathcal{Z}(I)$ implies that

$$\mathcal{Z}(I + (Yf - 1)) = \emptyset$$
 in K^{n+1} .

- (c) What does the Nullstellensatz have to say about that?
- (d) Apply the *R*-algebra homomorphism $\phi : R[Y] \to \operatorname{frac}(R)$ given by $\phi(Y) = \frac{1}{f}$ and clear denominators.

(2) Strong Nullstellensatz warmup:

- (a) Consider the ideal $I = (X^2 + Y^2) \in \mathbb{R}[X, Y]$ and f = X. Discuss the hypotheses and conclusion of Strong Nullstellensatz in this example.
- (b) Show that¹ no power of $F = X^2 + Y^2 + Z^2$ is in the ideal

 $I = (X^3 - Y^2 Z, Y^7 - XZ^3, 3X^5 - XYZ - 2Z^{19})$ in the ring $\mathbb{C}[X, Y, Z]$.

- (3) Prove the Corollary.
- (4) Let $R = \mathbb{C}[T]$ be a polynomial ring. In this problem, we will show that the ideal of \mathbb{C} -algebraic relations on the elements $\{T^2, T^3, T^4\}$ is $I = (X_1^2 - X_3, X_2^2 - X_1X_3)$. (a) Let $\phi : \mathbb{C}[X_1, X_2, X_3] \to \mathbb{C}[T]$ be the \mathbb{C} -algebra map $X_1 \mapsto T^2, X_2 \mapsto T^3, X_3 \mapsto T^4$. Show
 - that $I \subseteq \ker(\phi)$.
 - **(b)** Show that $\mathcal{Z}(I) \subseteq \{(\lambda^2, \lambda^3, \lambda^4) \in \mathbb{C}^3 \mid \lambda \in \mathbb{C})\} \subseteq \mathcal{Z}(\ker(\phi))$, and deduce that $\ker(\phi) \subseteq \sqrt{I}$.
 - (c) Show that I is prime², and complete the proof.
- (5) Let K be an algebraically closed field and $R = K \begin{bmatrix} X_{11} & X_{12} \\ X_{21} & X_{22} \end{bmatrix}$ be a polynomial ring. Use the Strong Nullstellensatz to show that any polynomial $F(X_{11}, X_{12}, X_{21}, X_{22})$ that vanishes on every matrix of rank at most one is a multiple of det $\begin{bmatrix} X_{11} & X_{12} \\ X_{21} & X_{22} \end{bmatrix}$.

¹Hint: You just need to find one point. One, one, one...

²Show $\mathbb{C}[X_1, X_2, X_3]/I$ is a domain by simplifying the quotient.

(6) We say that a subvariety of K^n is **irreducible** if it cannot be written as a union of two proper subvarities. Show that the bijection from the Corollary restricts to a bijection

{prime ideals in $K[X_1, \ldots, X_n]$ } \longleftrightarrow {irreducible subvarieties of K^n }.

(7) Use the Strong Nullstellensatz to show that, in a finitely generated algebra over an algebrically closed field, every radical ideal can be written as an intersection of maximal ideals.