DEFINITION: Let K be a field and $R = K[X_1, \ldots, X_n]$. For a set of polynomials $S \subseteq R$, we define the **zero-set** of **solution set** of S to be

$$
\mathcal{Z}(S) := \{ (a_1, \dots, a_n) \in K^n \mid F(a_1, \dots, a_n) = 0 \text{ for all } F \in S \}.
$$

NULLSTELLENSATZ: Let K be an algebraically closed field, and $R = K[X_1, \ldots, X_n]$ be a polynomial ring. Let $I \subseteq R$ be an ideal. Then $\mathcal{Z}(I) = \emptyset$ if and only if $I = R$ is the unit ideal. Put another way, a set S of multivariate polynomials has a common zero unless there is a "certificate of infeasibility" consisting of $f_1, \ldots, f_t \in S$ and $r_1, \ldots, r_t \in R$ such that $\sum_i r_i s_i = 1$.

PROPOSITION: Let K be an algebraically closed field, and $R = K[X_1, \ldots, X_n]$ be a polynomial ring. Every maximal ideal of R is of the form $\mathfrak{m}_{\alpha} = (X_1 - a_1, \dots, X_n - a_n)$ for some point $\alpha = (a_1 \ldots, a_n) \in K^n$.

- (1) Draw the "real parts" of $\mathcal{Z}(X^2 + Y^2 1)$ and of $\mathcal{Z}(XY, XZ)$.
- (2) Explain why the Nullstellensatz is definitely false if K is assumed to *not* be algebraically closed.
- (3) Basics of Z: Let $R = K[X_1, \ldots, X_n]$ be a polynomial ring.
	- (a) Explain why, for any system of polynomial equations $F_1 = G_1, \ldots, F_m = G_m$, the solution set can be written in the form $\mathcal{Z}(S)$ for some set S.
	- **(b)** Let $S \subseteq T$ be two sets of polynomials. Show that $\mathcal{Z}(S) \supseteq \mathcal{Z}(T)$.
	- (c) Let $I = (S)$. Show that $\mathcal{Z}(I) = \mathcal{Z}(S)$. Thus, every solution set system of any polynomial equations can be written as $\mathcal Z$ of some ideal.
	- (d) Explain the following: every system of equations over a polynomial ring is equivalent to a *finite* system of equations.
- (4) Proof of Proposition and Nullstellensatz: Let K be an algebraically closed field, and $R = K[X_1, \ldots, X_n]$ be a polynomial ring.
	- (a) Use Zariski's Lemma to show that for every maximal ideal m $\subseteq R$, we have $R/\mathfrak{m} \cong K$.
	- (b) Reuse some old work to deduce the Proposition.
	- (c) Deduce the Nullstellensatz from the Proposition.
	- (d) Convince yourself that the "certificate of infeasibility" version follows from the other one.
- (5) Given a system of polynomial equations and inequations

(*) $F_1 = 0, \ldots, F_m = 0 \qquad G_1 \neq 0, \ldots, G_\ell \neq 0$

come up with a system¹ of equations (\dagger) *in one extra variable* such that (\star) has a solution if and only if (†) has a solution. Thus every equation-and-inequation feasibility problem is equivalent to a question of the form $\mathcal{Z}(I) \stackrel{?}{=} \varnothing$.

¹Hint: $\lambda \in K$ is nonzero if and only if there is some μ such that $\lambda \mu = 1$.

- (6) Show that any system of multivariate polynomial equations (or equations and inequations) over a field K has a solution in some extension field of L if and only if it has a solution over \overline{K} .
- (7) Let K be a field and $R = K[X_1, \ldots, X_n]$. Let $L \supseteq K$ and $S = L[X_1, \ldots, X_n]$.
	- (a) Find some f that is irreducible in R but reducible in S for some choice of $K \subseteq L$.
	- (b) Show that if K is algebraically closed and $f \in R$ is irreducible, then it is irreducible in S.
	- (c) Show that if K is algebraically closed and $I \subseteq R$ is prime, then IS is prime.
- (8) Show that the statement of the Nullstellensatz holds for the ring of continuous functions from $[0, 1]$ to \mathbb{R} .