
§4.15: NOETHER NORMALIZATION AND ZARISKI’S LEMMA

NOETHER NORMALIZATION: Let K be a field, and R be a finitely-generated K-algebra.
Then there exists a finite1 set of elements f1, . . . , fm ∈ R that are algebraically independent
over K such that K[f1, . . . , fm] ⊆ R is module-finite; equivalently, there is a module-finite
injectiveK-algebra map from a polynomial ringK[X1, . . . , Xm] ↪→ R. Such a ring S is called
a Noether normalization for R.

LEMMA: Let A be a ring, and F ∈ R := A[X1, . . . , Xn] be a nonzero polynomial. Then there
exists an A-algebra automorphism φ of R such that φ(F ), viewed as a polynomial in Xn with
coefficients in A[X1, . . . , Xn−1], has top degree term aX t

n for some a ∈ Ar 0 and t ≥ 0.
• If A = K is an infinite field, one can take φ(Xn) = Xn and φ(Xi) = Xi + λiXn for

some λ1, . . . , λn−1 ∈ K.
• In general, if the top degree of F (with respect to the standard grading) is D, one can

take φ(Xn) = Xn and φ(Xi) = Xi +XDn−i

n for i < n.

ZARISKI’S LEMMA: An algebra-finite extension of fields is module-finite.

USEFUL VARIATIONS ON NOETHER NORMALIZATION:
• NN FOR DOMAINS: Let A ⊆ R be an algebra-finite inclusion of domains2. Then there

exists a ∈ A r 0 and f1, . . . , fm ∈ R[1/a] that are algebraically independent over
A[1/a] such that A[1/a][f1, . . . , fm] ⊆ R[1/a] is module-finite.
• GRADED NN: Let K be an infinite field, and R be a standard graded K-algebra.

Then there exist algebraically independent elements L1, . . . , Lm ∈ R1 such that
K[L1, . . . , Lm] ⊆ R is module-finite.
• NN FOR POWER SERIES: LetK be an infinite field, andR = KJX1, . . . , XnK/I . Then

there exists a module-finite injection KJY1, . . . , YmK ↪→ R for some power series ring
in m variables.

(1)(1) Examples of Noether normalizations: Let K be a field.

(a)(a) Show that K[x, y] is a Noether normalization of R =
K[X, Y, Z]

(X3 + Y 3 + Z3)
, where x, y

are the classes of X and Y in R, respectively.

(b)(b) Show that K[x] is not a Noether normalization of R =
K[X, Y ]

(XY )
. Then show that

K[x+ y] ⊆ R is a Noether normalization.
(c)(c) Show that K[X4, Y 4] is a Noether normalization for R = K[X4, X3Y,XY 3, Y 4].

(a)(a) From the equation z3 + x3 + y3 = 0, we have K[x, y] ⊆ R is integral, and since
z generates as an algebra, hence module-finite. We need to check that x, y are
algebraically independent in R. Suppose that p(x, y) = 0 in R, so p(X, Y ) ∈

1Possibly empty!
2The assumption that R is a domain is actually not necessary, but can’t quite state the general statement yet. We
assume that R is a domain so that there is fraction field of R in which to take R[1/a].



(X3 + Y 3 + Z3) in K[X, Y, Z]. By considering K[X, Y, Z] = K[X, Y ][Z] as
polynomials in Z, the Z-degree of such a p, which forces p = 0. Thus x, y are
algebraically independent.

(b)(b) y is not integral over K[x]: this would imply Y n + a1(X)Y n−1 + · · · an(X) =
XY b(X, Y ) in K[X, Y ], but no monomial from any term can cancel Y n. Alterna-
tively, if the inclusion is module-finite, go mod x to getK ⊆ K[X, Y ]/(XY,X) =
K[Y ] module-finite, which it isn’t.

(c)(c) It is easy to check that X4, Y 4 are algebraically independent, and (X3Y )4 =
(X4)3Y 4, (XY 3)4 = X4(Y 4)3 give integral dependence relations for the alge-
bra generators.

(2)(2) Use Noether Normalization3 to prove Zariski’s Lemma.

Let K ⊆ L be an algebra-finite extension of fields. Take a NN of L: say
K ⊆ K[`1, . . . , `t] ⊆ L, with `i algebraically independent and R := K[`1, . . . , `t] ⊆ L
module-finite and a fortiori integral. From the Integral Extensions worksheet, since L
and R are domains, the extension is integral, and L is a field, we know that R is a field.
This means that t = 0, so K ⊆ L is module-finite.

(3)(3) Proof of Noether Normalization (using the Lemma): Proceed by induction on the number
of generators of R as a K-algebra; write R = K[r1, . . . , rn].
(a)(a) Deal with the base case n = 0.
(b)(b) For the inductive step, first do the case that r1, . . . , rn are algebraically independent

over K.
(c)(c) Let α : K[X1, . . . , Xn]→ R be the K-algebra homomorphism such that α(Xi) = ri,

and let φ be aK-algebra automorphism ofK[X1, . . . , Xn]. Let r′i = α(φ(Xi)) for each
i. Explain4 why R = K[r′1, . . . , r

′
n], and for any K-algebra relation F on r1, . . . , rn,

the polynomial φ−1(F ) is a K-algebra relation on r′1, . . . , r
′
n.

(d)(d) Use the Lemma to find a K-subalgebra R′ of R with n − 1 generators such that the
inclusion R′ ⊆ R is module-finite.

(e)(e) Conclude the proof.

(a)(a) This means that R is a quotient of K, but K is a field, so R = K; the identity map
is module-finite.

(b)(b) If we have an algebraically independent set of generators for R, then R works: the
identity map is module-finite.

(c)(c) First we claim that R = K[r′1, . . . , r
′
n]: indeed, the map α′ = α ◦ φ is the K-

algebra map that sends Xi to r′i, and since α and φ are surjective, α′ is surjective,
verifying the claim. The relations on the r′i are of the elements of the kernel of α′;
if F is a relation on the originals, then α(F ) = 0, so α′(φ−1(F )) = 0 as well.

3and a suitable fact about integral extensions. . .
4Say α′ is the K-algebra map given by α′(Xi) = r′i. Observe that α′ = α ◦ φ. Why is this surjective?



(d)(d) Take a map φ as in the Lemma, and n generators r1, . . . , rn. Set r′i = φ−1(ri). By
the previous part, these generate, and there is a relation on these that is monic in
Xn, so R′ = K[r′1, . . . , r

′
n−1] ⊆ R is module-finite.

(e)(e) Apply IH to R′ to get K[f1, . . . , ft] ⊆ R′ with fi alg indep’t and the inclusion
module-finite. Then K[f1, . . . , ft] is a Noether normalization.

(4) Proof of the “general case” of the Lemma:
(a) Where do “base D expansions” fit in this picture?
(b) Consider the automorphism φ from the general case of the Lemma. Show that for a

monomial, we have φ(aXd1
1 · · ·Xdn

n ) is a polynomial with unique highest degree term
aXd1Dn−1+d2Dn−2+···+dn

n .
(c) Can two monomials µ, ν in F , have φ(µ) and φ(ν) with the same highest degree term?
(d) Complete the proof.

(5) Variations on NN.
(a) Adapt the proof of NN to show Graded NN.
(b) Adapt the proof of NN to show NN for domains.
(c) Adapt the proof of NN to show NN for power series.


