
§3.14: REES RINGS AND THE ARTIN-REES LEMMA

DEFINITION: Let R be a ring and I be an ideal. The Rees ring of I is the N-graded R-algebra

R[IT ] :=
⊕
d≥0

IdT d = R⊕ IT ⊕ I2T 2 ⊕ · · ·

with multiplication determined by (aT d)(bT e) = abT d+e for a ∈ Id, b ∈ Ie (and extended by the
distributive law for nonhomogeneous elements). Here In means the nth power of the ideal I in
R, and t is an indeterminate. Equivalently, R[IT ] is the R-subalgebra of the polynomial ring R[T ]
generated by IT , with R[T ] is given the standard grading R[T ]d = R · T d.

DEFINITION: Let R be a ring and I be an ideal. The associated graded ring of I is the N-graded
ring

grI(R) :=
⊕
d≥0

(Id/Id+1)T d = R/I ⊕ (I/I2)T ⊕ (I2/I3)T 2 ⊕ · · ·

with multiplication determined by (a+ Id+1T d)(b+ Ie+1T e) = ab+ Id+e+1 T d+e for a ∈ Id, b ∈ Ie

(and extended by the distributive law). For an element r ∈ R, its initial form in grI(R) is

r∗ :=

{
(r + Id+1)T d if r ∈ Id r Id+1

0 if r ∈
⋂

n≥0 I
n.

ARTIN-REES LEMMA: Let R be a Noetherian ring, I an ideal of R, M a finitely generated mod-
ule, and N ⊆ M a submodule. Then there is a constant1 c ≥ 0 such that for all n ≥ c, we
have InM ∩N ⊆ In−cN .

(1)(1) Warmup with Rees rings:
(a)(a) Let R be a ring and I be an ideal. Show that if I = (a1, . . . , an), then R[It] = R[a1t, . . . , ant].
(b)(b) Let K be a field, R = K[X, Y ] and I = (X, Y ). Find K-algebra generators for R[It], and

find a relation on these generators.

(a)(a) This follows from the Theorem we showed last time: given a (finite, though this isn’t
necessary) set of homogeneous elements that generate R+ as an ideal, these elements
generate R as an R0-algebra.

(b)(b) The elements X, Y,XT, Y T generate. A relation is X(Y T )−Y (XT ), or X1X4−X2X3

in dummy variables. In fact, this is a defining set of relations.

(2)(2) Warmup with associated graded rings:
(a)(a) Convince yourself that the multiplication given in the definition of grI(R) is well-defined.

After doing this, do not use coset notation for elements of grI(R) and instead write a typical
homogeneous element as something like r T d.

(b)(b) Let K be a field, R = K[X, Y ], and m = (X, Y ). Show that grm(R)d ∼= Rd as K-vector
spaces, and construct a ring isomorphism grm(R) ∼= R.

(c)(c) For the same R, show that the map R → grm(R) given by r 7→ r∗ is not a ring homomor-
phism.

(d)(d) Let K be a field, R = KJX, Y K, and m = (X, Y ). Show2 that grm(R) ∼= K[X, Y ].

1The constant c depends on I,M, and N but works for all t.
2Yes, the brackets changed. This is not a typo!



(e)(e) What happens in (b) and (d) if we have n variables instead of 2?

(a)(a) Let a ∈ Id and b ∈ Ie. Then given a′ ∈ Id+1 and b′ ∈ Ie+1, we have (a + a′)(b + b′) =
ab+ a′b+ ab′ + a′b′ ∈ ab+ Id+e+1.

(b)(b) Note that grI(R)d is exactly the vector space fT d with f ∈ Rd. So “ignoring” T is an
isomorphism of vector spaces. One checks directly that it is compatible with multiplica-
tion by reducing to the case of homogeneous elements.

(c)(c) For example, if f = X − 1 and g = 1, then f ∗ = −1, g∗ = 1, but (f + g)∗ = X .
(d)(d) Note that grI(R)d is again just the vector space fT d with f ∈ Rd, and multiplication is

the same as in the polynomial case.
(e)(e) The same thing.

(3)(3) Consider the special case of Artin-Rees where M = R, and I = (f) and N = (g).
(a)(a) What does Artin-Rees say in this setting? Express your answer in terms of “divides”.
(b)(b) Take R = Z. Does c = 0 “work” for every f, g ∈ Z? Can you find a sequence of examples

requiring arbitrarily large values of c?

(a)(a) There is some c such that fn|h and g|h implies (fn−cg)|h.
(b)(b) Take f = 2 and g = 2m. Then 2n|h and 2m|h implies 2max{m,n}|h. Then fn−cg =

2m+n−c. To guarantee this to divide h, we must have c ≥ m.

(4) Proof of Artin-Rees: Let R be a Noetherian ring, and I be an ideal.
(a) Explain why R[It] is a Noetherian ring.
(b) Let M =

∑
i Rmi be a finitely generated R-module. SetM :=

⊕
n≥0 I

nMtn. Show that
this is a graded R[It]-module, and thatM =

∑
i R[It] · mi, where in the last equality we

consider mi as the element mit
0 ∈M0.

(c) Given a submodule N of M , set N :=
⊕

n≥0(I
nM ∩N)tn ⊆M. Show that N is a graded

R[It]-submodule ofM.
(d) Show that there exist n1, . . . , nk ∈ N and c1, . . . , ck ≥ 0 such that N =

∑
j R[It] · njt

cj .
(e) Show that c := max{cj} satisfies the conclusion of the Artin-Rees Lemma.

(a) Since I is finitely generated, it is a finitely generated algebra over a Noetherian ring.
(b) First, we check that this is an R[It]-module. It is clearly an additive group. To check

that it is closed under the R[It]-action and that this yields a graded action, it suffices to
check that R[It]d ·Me ⊆Md+e. To see it, take rtd with r ∈ Id and mte with m ∈ IeM ;
then the action yields rmtd+e and rm ∈ Id(IeM) = Id+eM , so rmtd+e ∈ Md+e, as
required.
Clearly mi ∈ M, so

∑
i R[It] ·mi ⊆M. Now we check that this generates. It suffices

to check that any homogeneous element can be generated by this generating set, so take
some mtd ∈ Md with m ∈ IdM . This means we can write m =

∑
j ajuj with aj ∈ Id

and uj ∈M . Then we can write uj =
∑

bijmi for some bij ∈ R, yielding an expression
m =

∑
i cimi with ci ∈ Id. Thus, m =

∑
i(cit

d)mi ∈ R[It] ·mi.
(c) It suffices to check that R[It]d · Ne ⊆ Nd+e. Take rtd with r ∈ Id and nte with

n ∈ (IeM ∩N). Then rn ∈ Id(IeM ∩ N), so rn ∈ IdIeM = Id+eM and rn ∈
IdN ⊆ N , and hence rn ∈ Id+eM ∩N . Thus (rtd)(nte) ∈ Nd+e.



(d) Since R[It] is Noetherian andM is finitely generated, so is N . Since it is graded and
finitely generated, it can be generated by finitely many homogeneous elements. The
statement is just naming them.

(e) Let c = max{cj}. Take u ∈ InM ∩ N . Then utn ∈ Nn =
∑

j R[It] · njt
cj .

We can then express u as a homogeneous linear combination of these generators, so
utn =

∑
j(rjt

n−cj)(njt
cj). Since n− cj ≥ n− c, we have rj ∈ In−c, and each nj ∈ N ,

so u =
∑

j rjnj ∈ In−cN . Moving over the c, we obtain the statement.

(5) Presentations of associated graded rings: Let R be a ring and I, J be ideals. Set inI(J) to be the
ideal of grI(R) generated by {a∗ | a ∈ J}.
(a) Show that grI(R/J) ∼= grI(R)/in(J).
(b) If J = (f) is a principal ideal, show that inI(J) = (f ∗).
(c) Is inI((f1, . . . , ft)) = (f ∗1 , . . . , f

∗
t ) in general?

(d) Compute gr(x,y,z)(
KJX,Y,ZK

(X2+XY+Y 3+Z7)
).

(6) Properties of associated graded rings: Let R be a ring and I be an ideal such that
⋂

n≥0 I
n = 0.

(a) Show that if grI(R) is a domain, then so is R.
(b) Show that if grI(R) is reduced, then so is R.
(c) What about the converses of these statements?

(7) Show that for the ideal I = (X, Y )2 in R = K[X, Y ], the Rees ring R[It] has defining relations
of degree greater than one.


