
§3.14: REES RINGS AND THE ARTIN-REES LEMMA

DEFINITION: Let R be a ring and I be an ideal. The Rees ring of I is the N-graded R-algebra

R[IT ] :=
⊕
d≥0

IdT d = R⊕ IT ⊕ I2T 2 ⊕ · · ·

with multiplication determined by (aT d)(bT e) = abT d+e for a ∈ Id, b ∈ Ie (and extended by the
distributive law for nonhomogeneous elements). Here In means the nth power of the ideal I in R,
and T is an indeterminate. Equivalently, R[IT ] is the R-subalgebra of the polynomial ring R[T ]
generated by IT , with R[T ] is given the standard grading R[T ]d = R · T d.

DEFINITION: Let R be a ring and I be an ideal. The associated graded ring of I is the N-graded
ring

grI(R) :=
⊕
d≥0

(Id/Id+1)T d = R/I ⊕ (I/I2)T ⊕ (I2/I3)T 2 ⊕ · · ·

with multiplication determined by (a+ Id+1T d)(b+ Ie+1T e) = ab+ Id+e+1 T d+e for a ∈ Id, b ∈ Ie

(and extended by the distributive law). For an element r ∈ R, its initial form in grI(R) is

r∗ :=

{
(r + Id+1)T d if r ∈ Id r Id+1

0 if r ∈
⋂

n≥0 I
n.

ARTIN-REES LEMMA: Let R be a Noetherian ring, I an ideal of R, M a finitely generated mod-
ule, and N ⊆ M a submodule. Then there is a constant1 c ≥ 0 such that for all n ≥ c, we
have InM ∩N ⊆ In−cN .

(1)(1) Warmup with Rees rings:
(a)(a) Let R be a ring and I be an ideal. Show that if I = (a1, . . . , an), then R[IT ] = R[a1T, . . . , anT ].
(b)(b) Let K be a field, R = K[X, Y ] and I = (X, Y ). Find K-algebra generators for R[IT ], and

find a relation on these generators.

(2)(2) Warmup with associated graded rings:
(a)(a) Convince yourself that the multiplication given in the definition of grI(R) is well-defined.

After doing this, do not use coset notation for elements of grI(R) and instead write a typical
homogeneous element as something like r T d.

(b)(b) Let K be a field, R = K[X, Y ], and m = (X, Y ). Show that grm(R)d ∼= Rd as K-vector
spaces, and construct a ring isomorphism grm(R) ∼= R.

(c)(c) For the same R, show that the map R → grm(R) given by r 7→ r∗ is not a ring homomor-
phism.

(d)(d) Let K be a field, R = KJX, Y K, and m = (X, Y ). Show2 that grm(R) ∼= K[X, Y ].
(e)(e) What happens in (b) and (d) if we have n variables instead of 2?

(3)(3) Consider the special case of Artin-Rees where M = R, and I = (f) and N = (g).
(a)(a) What does Artin-Rees say in this setting? Express your answer in terms of “divides”.
(b)(b) Take R = Z. Does c = 0 “work” for every f, g ∈ Z? Can you find a sequence of examples

requiring arbitrarily large values of c?

1The constant c depends on I,M, and N but works for all n.
2Yes, the brackets changed. This is not a typo!



(4) Proof of Artin-Rees: Let R be a Noetherian ring, and I be an ideal.
(a) Explain why R[IT ] is a Noetherian ring.
(b) Let M =

∑
i Rmi be a finitely generated R-module. SetM :=

⊕
n≥0 I

nMT n. Show that
this is a graded R[IT ]-module, and thatM =

∑
iR[IT ] ·mi, where in the last equality we

consider mi as the element miT
0 ∈M0.

(c) Given a submodule N of M , setN :=
⊕

n≥0(I
nM ∩N)T n ⊆M. Show thatN is a graded

R[IT ]-submodule ofM.
(d) Show that there exist n1, . . . , nk ∈ N and c1, . . . , ck ≥ 0 such that N =

∑
j R[It] · njT

cj .
(e) Show that c := max{cj} satisfies the conclusion of the Artin-Rees Lemma.

(5) Presentations of associated graded rings: Let R be a ring and I, J be ideals. Set inI(J) to be the
ideal of grI(R) generated by {a∗ | a ∈ J}.
(a) Show that grI(R/J) ∼= grI(R)/in(J).
(b) If J = (f) is a principal ideal, show that inI(J) = (f ∗).
(c) Is inI((f1, . . . , ft)) = (f ∗

1 , . . . , f
∗
t ) in general?

(d) Compute gr(x,y,z)

(
KJX, Y, ZK

(X2 +XY + Y 3 + Z7)

)
.

(6) Properties of associated graded rings: Let R be a ring and I be an ideal such that
⋂

n≥0 I
n = 0.

(a) Show that if grI(R) is a domain, then so is R.
(b) Show that if grI(R) is reduced, then so is R.
(c) What about the converses of these statements?

(7) Show that for the ideal I = (X, Y )2 in R = K[X, Y ], the Rees ring R[IT ] has defining relations
of degree greater than one.


