DEFINITION: Let R be a ring and I be an ideal. The **Rees ring** of I is the N-graded R-algebra

$$
R[IT] := \bigoplus_{d \geq 0} I^d T^d = R \oplus IT \oplus I^2 T^2 \oplus \cdots
$$

with multiplication determined by $(aT^d)(bT^e) = abT^{d+e}$ for $a \in I^d$, $b \in I^e$ (and extended by the distributive law for nonhomogeneous elements). Here $Iⁿ$ means the nth power of the ideal I in R, and T is an indeterminate. Equivalently, $R[IT]$ is the R-subalgebra of the polynomial ring $R[T]$ generated by IT, with $R[T]$ is given the standard grading $R[T]_d = R \cdot T^d$.

DEFINITION: Let R be a ring and I be an ideal. The **associated graded ring** of I is the N-graded ring

$$
\mathrm{gr}_I(R) := \bigoplus_{d \geq 0} (I^d / I^{d+1}) T^d = R / I \oplus (I / I^2) T \oplus (I^2 / I^3) T^2 \oplus \cdots
$$

with multiplication determined by $(a + I^{d+1}T^d)(b + I^{e+1}T^e) = ab + I^{d+e+1}T^{d+e}$ for $a \in I^d$, $b \in I^e$ (and extended by the distributive law). For an element $r \in R$, its **initial form** in $gr_I(R)$ is

$$
r^* := \begin{cases} (r + I^{d+1})T^d & \text{if } r \in I^d \setminus I^{d+1} \\ 0 & \text{if } r \in \bigcap_{n \ge 0} I^n. \end{cases}
$$

ARTIN-REES LEMMA: Let R be a Noetherian ring, I an ideal of R, M a finitely generated module, and $N \subseteq M$ a submodule. Then there is a constant $c \geq 0$ such that for all $n \geq c$, we have $I^n M \cap N \subseteq I^{n-c}N$.

- (1) Warmup with Rees rings:
	- (a) Let R be a ring and I be an ideal. Show that if $I = (a_1, \ldots, a_n)$, then $R[IT] = R[a_1T, \ldots, a_nT]$.
	- **(b)** Let K be a field, $R = K[X, Y]$ and $I = (X, Y)$. Find K-algebra generators for R[IT], and find a relation on these generators.
- (2) Warmup with associated graded rings:
	- (a) Convince yourself that the multiplication given in the definition of $gr_I(R)$ is well-defined. After doing this, do *not* use coset notation for elements of $gr_I(R)$ and instead write a typical homogeneous element as something like $\overline{r}T^d$.
	- **(b)** Let K be a field, $R = K[X, Y]$, and $\mathfrak{m} = (X, Y)$. Show that $\operatorname{gr}_{\mathfrak{m}}(R)_d \cong R_d$ as K-vector spaces, and construct a ring isomorphism $\text{gr}_{m}(R) \cong R$.
	- (c) For the same R, show that the map $R \to \text{gr}_{\mathfrak{m}}(R)$ given by $r \mapsto r^*$ is *not* a ring homomorphism.
	- (d) Let K be a field, $R = K[[X, Y]]$, and $\mathfrak{m} = (X, Y)$. Show² that $gr_{\mathfrak{m}}(R) \cong K[X, Y]$.
(e) What happens in (b) and (d) if we have a variables instead of 22
	- (e) What happens in (b) and (d) if we have n variables instead of 2?
- (3) Consider the special case of Artin-Rees where $M = R$, and $I = (f)$ and $N = (g)$.
	- (a) What does Artin-Rees say in this setting? Express your answer in terms of "divides".
	- (b) Take $R = \mathbb{Z}$. Does $c = 0$ "work" for every $f, q \in \mathbb{Z}$? Can you find a sequence of examples requiring arbitrarily large values of c ?

¹The constant c depends on I, M, and N but works for all n.

 2 Yes, the brackets changed. This is not a typo!

- (4) Proof of Artin-Rees: Let R be a Noetherian ring, and I be an ideal.
	- (a) Explain why $R[IT]$ is a Noetherian ring.
	- (b) Let $M = \sum_i Rm_i$ be a finitely generated R-module. Set $\mathcal{M} := \bigoplus_{n \geq 0} I^n M T^n$. Show that this is a graded $R[IT]$ -module, and that $\mathcal{M} = \sum_i R[IT] \cdot m_i$, where in the last equality we consider m_i as the element $m_iT^0 \in \mathcal{M}_0$.
	- (c) Given a submodule N of M, set $\mathcal{N} := \bigoplus_{n \geq 0} (I^n M \cap N)T^n \subseteq \mathcal{M}$. Show that N is a graded $R[IT]$ -submodule of M.
	- (d) Show that there exist $n_1, \ldots, n_k \in N$ and $c_1, \ldots, c_k \ge 0$ such that $\mathcal{N} = \sum_j R[It] \cdot n_j T^{c_j}$.
	- (e) Show that $c := \max\{c_i\}$ satisfies the conclusion of the Artin-Rees Lemma.
- (5) Presentations of associated graded rings: Let R be a ring and I, J be ideals. Set $\text{in}_I(J)$ to be the ideal of $gr_I(R)$ generated by $\{a^* \mid a \in J\}$.
	- (a) Show that $gr_I(R/J) \cong gr_I(R)/\text{in}(J)$.
	- (b) If $J = (f)$ is a principal ideal, show that $\text{in}_I(J) = (f^*)$.
	- (c) Is $\text{in}_{I}((f_{1},...,f_{t})) = (f_{1}^{*},...,f_{t}^{*})$ in general? \setminus
	- (d) Compute $gr_{(x,y,z)}$ $\left(\frac{K[[X, Y, Z]]}{(X^2 + XY + Y^3 + Z^7)} \right)$.
- (6) Properties of associated graded rings: Let R be a ring and I be an ideal such that $\bigcap_{n\geq 0} I^n = 0$.
	- (a) Show that if $gr_I(R)$ is a domain, then so is R.
	- (b) Show that if $gr_I(R)$ is reduced, then so is R.
	- (c) What about the converses of these statements?
- (7) Show that for the ideal $I = (X, Y)^2$ in $R = K[X, Y]$, the Rees ring $R[IT]$ has defining relations of degree greater than one.