HILBERT'S FINITENESS THEOREM: Let K be a field of characteristic zero, and $R = K[X_1, \ldots, X_n]$ be a polynomial ring. Let G be a finite group acting on R by degree-preserving K-algebra automorphisms. Then the invariant ring R^G is algebra-finite over K.

THEOREM: Let R be an \mathbb{N} -graded ring. Then R is Noetherian if and only if R_0 is Noetherian and R is algebra-finite over R_0 .

DEFINITION: Let $R \subseteq S$ be an inclusion of rings. We say that R is a **direct summand** of S if there is an R-module homomorphism $\pi : S \to R$ such that $\pi|_R = \mathbb{1}_R$.

PROPOSITION: A direct summand of a Noetherian ring is Noetherian.

LEMMA: Let R be a polynomial ring over a field K. If G is a group acting on R by degree-preserving K-algebra automorphisms, then

(1) R^G is an \mathbb{N} -graded K-subalgebra of R with $(R^G)_0 = K$.

(2) If in addition, G is finite, and |G| is invertible in K, then R^G is a direct summand of R.

(1) Use the Lemma, Proposition, and Theorem to deduce Hilbert's finiteness Theorem.

By the Lemma, R^G is a direct summand of R. Since R is Noetherian, so is R^G . By the Lemma, R^G is graded with $(R^G)_0 = K$. Then, by the Theorem, since R^G is Noetherian, and R^G is algebra-finite over $(R^G)_0$, and it remains to note that $(R^G)_0 = K$.

(2) Proof of Theorem:

- (a) Explain the direction (\Leftarrow).
- (b) Show that R Noetherian implies R_0 is Noetherian.
- (c) Let f_1, \ldots, f_t be a homogeneous generating set for R_+ , the ideal generated by positive degree elements of R. Show¹ by (strong) induction on d that every element of R_d is contained in $R_0[f_1, \ldots, f_t]$.
- (d) Conclude the proof of the Theorem.
 - (a) This follows from the Hilbert Basis Theorem.
 - (b) $R_0 \cong R/R_+$.
 - (c) For d = 0 there is nothing to show. For d > 0, take $h \in R_d$. Since $R_d \subseteq R_+$, write $h = \sum_i r_i f_i$ for some $r_i \in R$. If we replace r_i by r'_i its homogeneous component of degree $d \deg(f_i)$, we claim that $h = \sum_i r'_i f_i$. Indeed, writing each r_i as a sum of homogeneous components and multiplying out, all of the other terms are homogeneous of some other degree, so the claim follows by uniqueness of homogeneous decomposition. So suppose r_i is homogeneous of degree $d \deg(f_i)$. By induction, we have $r_i \in R_0[f_1, \ldots, f_t]$. But then this plus $h = \sum_i r_i f_i$ show $h \in R_0[f_1, \ldots, f_t]$.
 - (d) If R is Noetherian then R_+ is finitely generated as an ideal; since R_+ is homogeneous, it is generated by the (fintely many) components of these generators so has a finite homogeneous generating set, and a such generating set of R_+ generates R as an algebra over R_0 by the previous part.

¹Hint: Start by writing $h \in R_d$ as $h = \sum_i r_i f_i$ with $d = \deg(r_i) + \deg(f_i)$ for all *i*.

- (3) Proof of Proposition:
 - (a) Show that if R is a direct summand of S, and I is an ideal of R, then $IS \cap R = I$.
 - (**b**) Complete the proof of the proposition.
 - (a) We always have I ⊆ IS ∩ R. Let f ∈ IS ∩ R, so f = ∑_i a_is_i with a_i ∈ I, s_i ∈ S. Apply the map π. Since f ∈ R, we have π(f) = f. Since π is R-linear, we also have π(∑_i a_is_i) = ∑_i a_iπ(s_i), with π(s_i) ∈ R. But this is an element of I, so f ∈ I.
 (b) Let I₁ ⊆ I₂ ⊆ I₃ ⊆ ··· be a chain of ideals in R. Then I₁S ⊆ I₂S ⊆ I₃S ⊆ ··· is a
 - chain of ideals in S, which necessarily stabilizes. But the chain $(I_1S \cap R) \subseteq (I_2S \cap R) \subseteq (I_3S \cap R) \subseteq \cdots$ stabilizes, but this is our original chain!

(4) Proof of Lemma part (2): Consider $r \mapsto \frac{1}{|G|} \sum_{g \in G} g \cdot r$.

One checks directly that this map is R^G -linear and restricts to the identity on R^G .

- (5) Show that a direct summand of a normal ring is normal.
- (6) Let S_3 denote the symmetric group on 3 letters, and let S_3 act on $R = \mathbb{C}[X_1, X_2, X_3]$ by permuting variables; i.e., σ is the \mathbb{C} -algebra homomorphism given by $\sigma \cdot X_i = X_{\sigma(i)}$. Find a \mathbb{C} -algebra generating set for R^{S_3} . What about replacing 3 by n?