HILBERT'S FINITENESS THEOREM: Let K be a field of characteristic zero, and $R = K[X_1, \ldots, X_n]$ be a polynomial ring. Let G be a finite group acting on R by degree-preserving K -algebra automorphisms. Then the invariant ring R^G is algebra-finite over K.

THEOREM: Let R be an N-graded ring. Then R is Noetherian if and only if R_0 is Noetherian and R is algebra-finite over R_0 .

DEFINITION: Let $R \subseteq S$ be an inclusion of rings. We say that R is a **direct summand** of S if there is an R-module homomorphism $\pi : S \to R$ such that $\pi|_R = \mathbb{1}_R$.

PROPOSITION: A direct summand of a Noetherian ring is Noetherian.

LEMMA: Let R be a polynomial ring over a field K. If G is a group acting on R by degree-preserving K-algebra automorphisms, then

- (1) R^G is an N-graded K-subalgebra of R with $(R^G)_0 = K$.
- (2) If in addition, G is finite, and |G| is invertible in K , then R^G is a direct summand of R.

(1) Use the Lemma, Proposition, and Theorem to deduce Hilbert's finiteness Theorem.

- (2) Proof of Theorem:
	- (a) Explain the direction (\Leftarrow) .
	- **(b)** Show that R Noetherian implies R_0 is Noetherian.
	- (c) Let f_1, \ldots, f_t be a homogeneous generating set for R_+ , the ideal generated by positive degree elements of R. Show¹ by (strong) induction on d that every element of R_d is contained in $R_0[f_1, \ldots, f_t].$
	- (d) Conclude the proof of the Theorem.
- (3) Proof of Proposition:
	- (a) Show that if R is a direct summand of S, and I is an ideal of R, then $IS \cap R = I$.
	- (b) Complete the proof of the proposition.
- (4) Proof of Lemma part (2): Consider $r \mapsto \frac{1}{|G|} \sum_{g \in G} g \cdot r$.
- (5) Let S_3 denote the symmetric group on 3 letters, and let S_3 act on $R = \mathbb{C}[X_1, X_2, X_3]$ by permuting variables; i.e., σ is the C-algebra homomorphism given by $\sigma \cdot X_i = X_{\sigma(i)}$. Show² that

$$
R^{S_3} = \mathbb{C}[X_1 + X_2 + X_3, X_1X_2 + X_1X_3 + X_2X_3, X_1X_2X_3]
$$

and that $X_1 + X_2 + X_3$, $X_1X_2 + X_1X_3 + X_2X_3$, $X_1X_2X_3$ are algebraically independent over \mathbb{C} . What about replacing 3 with n ?

(6) Show that a direct summand of a normal ring is normal.

¹Hint: Start by writing $h \in R_d$ as $h = \sum_i r_i f_i$ with $d = \deg(r_i) + \deg(f_i)$ for all i.

²Hint: Order the monomials of R by lexicographic (dictionary) order. Given a homogeneous invariant, can you find an element of $\mathbb{C}[X_1 + X_2 + X_3, X_1X_2 + X_1X_3 + X_2X_3, X_1X_2X_3]$ with the same "first" monomial in that order?