§3.12: GRADED MODULES

DEFINITION: Let R be an N-graded ring with graded pieces R;. A Z-grading on an R-module M is

e a decomposition of M as additive groups M = @, M.
e such thatr € R; and m € M, implies rm € My,..

An Z-graded module is a module with a Z-grading. As with rings, we have the notions of homo-
geneous elements of M, the degree of a homogeneous element, homogeneous decomposition of an
arbitrary element of M/. A homomorphism ¢ : M — N between graded modules is degree-preserving
if $(M.) C N..

GRADED NAK 1: Let R be an N-graded ring, and R, be the ideal generated by the homogeneous
elements of positive degree. Let M be a Z-graded module. Suppose that M, = 0; that is, there is
some n € Z such that M; = 0 fort < n. Then M = R, M implies M = 0.

GRADED NAK 2: Let R be an N-graded ring and M be a Z-graded module with M, = 0. Let N be
a graded submodule of M. Then M = N + R, M if and only if M = N.

GRADED NAK 3: Let R be an N-graded ring and M be a Z-graded module with M, = 0. Then a
set of homogeneous elements S C M generates M if and only if the image of S in M /R, M generates
M/R, M as a module over Ry = R/R,.

DEFINITION: Let R be an N-graded ring with Ry = K a field. Let M be a a Z-graded module with
Mo = 0. A set S of homogeneous elements of M is a minimal generating set for )/ if the image of
S'in M /R, M is an K-vector space basis.

(1) Warmup with minimal generating sets.
(@) Note that the definition of “minimal generating set”” does not say that it is a generating set. Use
Graded NAK 3 to explain why it is!

() Let K be afield and S = K[X,Y]. Verify that {X? XY, Y?} is a minimal generating set of

the ideal [ it generates in S.

(c) Let K be a field. Find a minimal generating set of S = K[X,Y] as a module over the
K-subalgebra R = K[X + Y, XY].

(@) A basis is a generating set; it is then the (<=) of Graded NAK 3.

() We need to show that the images of X2, XY, Y? form a basis for I /R, I; write lowercase
for images in this quotient. To see that they span, take F' € I,so F' = AX?+ BXY +CY?
for A, B,C € R;then going modulo R, we have f = az?+bxy+cy?, so 22, xy, y? span the
quotient. For linear independence, ax?+bxy+cy? = 0implies AX?+BXY +CY? € R, I,
and by comparing degrees, A, B, C have bottom degree one, hence are in R, so a, b, c = 0.
Alternatively, note that / consists of all polynomials of bottom degree at least two, and R [
consists of all polynomials of bottom degree at least three. Then the quotient is isomorphic
as a vector space to the collection of polynomials of degree two, and X2, XY, Y? is indeed
a basis.

(¢) We compute S/R. S = K[X,Y]/(X +Y,XY) & K[Y]/(-Y?) = K[Y]/(Y?), so the
classes of 1,Y generate. Thus {1, Y} forms a minimal generating set.

(2) Proofs of graded NAKs:
(@) Prove Graded NAK 1.




(b) Use Graded NAK 1 to prove Graded NAK 2.
(c) Use Graded NAK 2 to prove Graded NAK 3.

(@) Suppose that M # (. Take a nonzero homogeneous element m of minimal degree d in M,
which exists by the hypothesis. Then since m € R, M, we can write 7 = ) . r;m; with
r; € R4, so the bottom degree of r; is at least one. Thus, we can take the top degree of m;
to be < d. But then each m; = 0, so m = 0, a contradiction.

() The (<) direction is clear. For the other, we can apply Graded NAK 1 to M /N since it is
graded and its degrees are bounded below. We have % = W = R+% so M/N = 0;
ie., M = N.

(c) Apply Graded NAK 2 to the submodule N = " _¢ Rs: to do so, we need to note that
a submodule generated by homogeneous elements is a graded submodule, which follows
along similar lines to the corresponding statement we showed for ideals.

(3) The hypotheses:

(@) Examine your proofs from the previous problem and verify that one direction (each) of Graded
NAK 2 and Graded NAK 3 hold without assuming that R or M is graded.

(b) Let K be afield and R = K[X] with the standard grading. Let M = K[X]/(X — 1). Analyze
the hypotheses and conclusion of Graded NAK 1 for this example.

(c) Let K be a field and R = K[X] with the standard grading. Let M = K[X, X !]. Analyze the
hypotheses and conclusion of Graded NAK 1 for this example.

(d) Find counterexamples to Graded NAK 3 with M is not graded or not bounded below in degree.

(@) The (<) direction of Graded NAK 2 and the (=) direction of Graded NAK 3 hold without
assuming that 12 or M is graded.

(b) M is not a graded module; any element is of the form ) for A € K if such an element was
homogeneous, then

deg(A) = deg(X\) = deg(X) + deg(A) = 1 + deg()),

a contradiction. We also have M = (X)M = R M.
(c) M is graded, but not bounded below. We also have M = (X)M = R, M.
(d) For a cheap example, take either of the previous with S = @.

(4) Minimal generating sets: Let ? be an N-graded ring with Ry = K a field. Let M be a a Z-graded
module with M o = 0.

(a) Explain why every minimal generating set for M has the same cardinality.

(b) Explain why every homogeneous generating set for M contains a minimal generating set for
M. Moreover, explain why any generating set (homogeneous or not) has cardinality at least
that of a minimal generating set.

(c) Explain why “minimal generating set” is equivalent to “homogeneous generating set such that
no proper subset generates”.

(d) Give an example of a finitely generated module N over K'[X, Y] and two generating set .Sy, So
for IV such that no proper subset of .S; generates IV, but | S| # |S2|. Compare to the statements
above.

(a) Because all bases of a vector space do.

(b) If S is a homogeneous generating set for M/, then the images span M /R, M, so the images
must contain a basis; the elements of .S’ that map to a basis form a minimal generating set.
For a general generating set, its images still contain a basis of M /R, M.




(c) This just follows from the fact that a basis of a vector space is the same as a minimal
spanning set.
(d) One could take the two generating sets of the ideal / = ((X — 1)Y, XY) = (V).

(5) Let R be an N-graded ring with Ry = K a field. Suppose that R..q = R/ /0 is a domain, and
that f € R is a homogeneous nonnilpotent element of positive degree. Show that R/( f) is reduced
implies that 12 is a reduced, and hence a domain.

(6) Let r € /0 be a homogeneous nilpotent element. Then for some e € N we have 7* = 0 € (f),
and since R/(f) is reduced, r € (f). Thus, we can write r = fs for some homogeneous s. But
r € V0, fé¢ V0, and \/6prime implies that s € /0. This implies that V0 = f\/6 C R+\/6,
s0 V0 = 0; i.e., R is reduced.




