
§3.12: GRADED MODULES

DEFINITION: Let R be an N-graded ring with graded pieces Ri. A Z-grading on an R-module M is
• a decomposition of M as additive groups M =

⊕
e∈ZMe

• such that r ∈ Rd and m ∈Me implies rm ∈Md+e.
An Z-graded module is a module with a Z-grading. As with rings, we have the notions of homo-
geneous elements of M , the degree of a homogeneous element, homogeneous decomposition of an
arbitrary element of M . A homomorphism φ :M → N between graded modules is degree-preserving
if φ(Me) ⊆ Ne.

GRADED NAK 1: Let R be an N-graded ring, and R+ be the ideal generated by the homogeneous
elements of positive degree. Let M be a Z-graded module. Suppose that M�0 = 0; that is, there is
some n ∈ Z such that Mt = 0 for t ≤ n. Then M = R+M implies M = 0.

GRADED NAK 2: Let R be an N-graded ring and M be a Z-graded module with M�0 = 0. Let N be
a graded submodule of M . Then M = N +R+M if and only if M = N .

GRADED NAK 3: Let R be an N-graded ring and M be a Z-graded module with M�0 = 0. Then a
set of homogeneous elements S ⊆M generates M if and only if the image of S in M/R+M generates
M/R+M as a module over R0

∼= R/R+.

DEFINITION: Let R be an N-graded ring with R0 = K a field. Let M be a a Z-graded module with
M�0 = 0. A set S of homogeneous elements of M is a minimal generating set for M if the image of
S in M/R+M is an K-vector space basis.

(1)(1) Warmup with minimal generating sets.
(a)(a) Note that the definition of “minimal generating set” does not say that it is a generating set. Use

Graded NAK 3 to explain why it is!
(b)(b) Let K be a field and S = K[X, Y ]. Verify that {X2, XY, Y 2} is a minimal generating set of

the ideal I it generates in S.
(c)(c) Let K be a field. Find a minimal generating set of S = K[X, Y ] as a module over the

K-subalgebra R = K[X + Y,XY ].

(a)(a) A basis is a generating set; it is then the (⇐) of Graded NAK 3.
(b)(b) We need to show that the images of X2, XY, Y 2 form a basis for I/R+I; write lowercase

for images in this quotient. To see that they span, take F ∈ I , so F = AX2+BXY +CY 2

forA,B,C ∈ R; then going moduloR+ we have f = ax2+bxy+cy2, so x2, xy, y2 span the
quotient. For linear independence, ax2+bxy+cy2 = 0 impliesAX2+BXY +CY 2 ∈ R+I ,
and by comparing degrees,A,B,C have bottom degree one, hence are inR+, so a, b, c = 0.
Alternatively, note that I consists of all polynomials of bottom degree at least two, andR+I
consists of all polynomials of bottom degree at least three. Then the quotient is isomorphic
as a vector space to the collection of polynomials of degree two, and X2, XY, Y 2 is indeed
a basis.

(c)(c) We compute S/R+S = K[X, Y ]/(X + Y,XY ) ∼= K[Y ]/(−Y 2) ∼= K[Y ]/(Y 2), so the
classes of 1, Y generate. Thus {1, Y } forms a minimal generating set.

(2)(2) Proofs of graded NAKs:
(a)(a) Prove Graded NAK 1.



(b)(b) Use Graded NAK 1 to prove Graded NAK 2.
(c)(c) Use Graded NAK 2 to prove Graded NAK 3.

(a)(a) Suppose that M 6= 0. Take a nonzero homogeneous element m of minimal degree d in M ,
which exists by the hypothesis. Then since m ∈ R+M , we can write r =

∑
i rimi with

ri ∈ R+, so the bottom degree of ri is at least one. Thus, we can take the top degree of mi

to be < d. But then each mi = 0, so m = 0, a contradiction.
(b)(b) The (⇐) direction is clear. For the other, we can apply Graded NAK 1 to M/N since it is

graded and its degrees are bounded below. We have M
N

= N+R+M
N

= R+
M
N

so M/N = 0;
i.e., M = N .

(c)(c) Apply Graded NAK 2 to the submodule N =
∑

s∈S Rs: to do so, we need to note that
a submodule generated by homogeneous elements is a graded submodule, which follows
along similar lines to the corresponding statement we showed for ideals.

(3)(3) The hypotheses:
(a)(a) Examine your proofs from the previous problem and verify that one direction (each) of Graded

NAK 2 and Graded NAK 3 hold without assuming that R or M is graded.
(b)(b) Let K be a field and R = K[X] with the standard grading. Let M = K[X]/(X − 1). Analyze

the hypotheses and conclusion of Graded NAK 1 for this example.
(c)(c) Let K be a field and R = K[X] with the standard grading. Let M = K[X,X−1]. Analyze the

hypotheses and conclusion of Graded NAK 1 for this example.
(d)(d) Find counterexamples to Graded NAK 3 with M is not graded or not bounded below in degree.

(a)(a) The (⇐) direction of Graded NAK 2 and the (⇒) direction of Graded NAK 3 hold without
assuming that R or M is graded.

(b)(b) M is not a graded module; any element is of the form λ for λ ∈ K; if such an element was
homogeneous, then

deg(λ) = deg(Xλ) = deg(X) + deg(λ) = 1 + deg(λ),

a contradiction. We also have M = (X)M = R+M .
(c)(c) M is graded, but not bounded below. We also have M = (X)M = R+M .
(d)(d) For a cheap example, take either of the previous with S = ∅.

(4) Minimal generating sets: Let R be an N-graded ring with R0 = K a field. Let M be a a Z-graded
module with M�0 = 0.
(a) Explain why every minimal generating set for M has the same cardinality.
(b) Explain why every homogeneous generating set for M contains a minimal generating set for

M . Moreover, explain why any generating set (homogeneous or not) has cardinality at least
that of a minimal generating set.

(c) Explain why “minimal generating set” is equivalent to “homogeneous generating set such that
no proper subset generates”.

(d) Give an example of a finitely generated module N over K[X, Y ] and two generating set S1, S2

for N such that no proper subset of Si generates N , but |S1| 6= |S2|. Compare to the statements
above.

(a) Because all bases of a vector space do.
(b) If S is a homogeneous generating set for M , then the images span M/R+M , so the images

must contain a basis; the elements of S that map to a basis form a minimal generating set.
For a general generating set, its images still contain a basis of M/R+M .



(c) This just follows from the fact that a basis of a vector space is the same as a minimal
spanning set.

(d) One could take the two generating sets of the ideal I = ((X − 1)Y,XY ) = (Y ).

(5) Let R be an N-graded ring with R0 = K a field. Suppose that Rred = R/
√
0 is a domain, and

that f ∈ R is a homogeneous nonnilpotent element of positive degree. Show that R/(f) is reduced
implies that R is a reduced, and hence a domain.

(6) Let r ∈
√
0 be a homogeneous nilpotent element. Then for some e ∈ N we have re = 0 ∈ (f),

and since R/(f) is reduced, r ∈ (f). Thus, we can write r = fs for some homogeneous s. But
r ∈
√
0, f /∈

√
0, and

√
0 prime implies that s ∈

√
0. This implies that

√
0 = f

√
0 ⊆ R+

√
0,

so
√
0 = 0; i.e., R is reduced.


