DEFINITION: Let R be an \mathbb{N} -graded ring with graded pieces R_i . A \mathbb{Z} -grading on an R-module M is

- a decomposition of M as additive groups $M = \bigoplus_{e \in \mathbb{Z}} M_e$
- such that $r \in R_d$ and $m \in M_e$ implies $rm \in M_{d+e}$.

An \mathbb{Z} -graded module is a module with a \mathbb{Z} -grading. As with rings, we have the notions of homogeneous elements of M, the degree of a homogeneous element, homogeneous decomposition of an arbitrary element of M. A homomorphism $\phi : M \to N$ between graded modules is degree-preserving if $\phi(M_e) \subseteq N_e$.

GRADED NAK 1: Let R be an \mathbb{N} -graded ring, and R_+ be the ideal generated by the homogeneous elements of positive degree. Let M be a \mathbb{Z} -graded module. Suppose that $M_{\ll 0} = 0$; that is, there is some $n \in \mathbb{Z}$ such that $M_t = 0$ for $t \leq n$. Then $M = R_+M$ implies M = 0.

GRADED NAK 2: Let R be an N-graded ring and M be a Z-graded module with $M_{\ll 0} = 0$. Let N be a graded submodule of M. Then $M = N + R_+M$ if and only if M = N.

GRADED NAK 3: Let R be an \mathbb{N} -graded ring and M be a \mathbb{Z} -graded module with $M_{\ll 0} = 0$. Then a set of homogeneous elements $S \subseteq M$ generates M if and only if the image of S in M/R_+M generates M/R_+M as a module over $R_0 \cong R/R_+$.

DEFINITION: Let R be an \mathbb{N} -graded ring with $R_0 = K$ a field. Let M be a a \mathbb{Z} -graded module with $M_{\ll 0} = 0$. A set S of homogeneous elements of M is a **minimal generating set** for M if the image of S in M/R_+M is an K-vector space basis.

- (1) Warmup with minimal generating sets.
 - (a) Note that the definition of "minimal generating set" does not say that it is a generating set. Use Graded NAK 3 to explain why it is!
 - (b) Let K be a field and S = K[X, Y]. Verify that $\{X^2, XY, Y^2\}$ is a minimal generating set of the ideal I it generates in S.
 - (c) Let K be a field. Find a minimal generating set of S = K[X,Y] as a module over the K-subalgebra R = K[X + Y, XY].
 - (a) A basis is a generating set; it is then the (\Leftarrow) of Graded NAK 3.
 - (b) We need to show that the images of X^2 , XY, Y^2 form a basis for I/R_+I ; write lowercase for images in this quotient. To see that they span, take $F \in I$, so $F = AX^2 + BXY + CY^2$ for $A, B, C \in R$; then going modulo R_+ we have $f = ax^2 + bxy + cy^2$, so x^2, xy, y^2 span the quotient. For linear independence, $ax^2 + bxy + cy^2 = 0$ implies $AX^2 + BXY + CY^2 \in R_+I$, and by comparing degrees, A, B, C have bottom degree one, hence are in R_+ , so a, b, c = 0. Alternatively, note that I consists of all polynomials of bottom degree at least two, and R_+I consists of all polynomials of bottom degree at least three. Then the quotient is isomorphic as a vector space to the collection of polynomials of degree two, and X^2, XY, Y^2 is indeed a basis.
 - (c) We compute $S/R_+S = K[X,Y]/(X+Y,XY) \cong K[Y]/(-Y^2) \cong K[Y]/(Y^2)$, so the classes of 1, Y generate. Thus $\{1, Y\}$ forms a minimal generating set.
- (2) Proofs of graded NAKs:(a) Prove Graded NAK 1.

- **(b)** Use Graded NAK 1 to prove Graded NAK 2.
- (c) Use Graded NAK 2 to prove Graded NAK 3.
 - (a) Suppose that M ≠ 0. Take a nonzero homogeneous element m of minimal degree d in M, which exists by the hypothesis. Then since m ∈ R₊M, we can write r = ∑_i r_im_i with r_i ∈ R₊, so the bottom degree of r_i is at least one. Thus, we can take the top degree of m_i to be < d. But then each m_i = 0, so m = 0, a contradiction.
 - **(b)** The (\Leftarrow) direction is clear. For the other, we can apply Graded NAK 1 to M/N since it is graded and its degrees are bounded below. We have $\frac{M}{N} = \frac{N+R+M}{N} = R_+\frac{M}{N}$ so M/N = 0; i.e., M = N.
 - (c) Apply Graded NAK 2 to the submodule $N = \sum_{s \in S} Rs$: to do so, we need to note that a submodule generated by homogeneous elements is a graded submodule, which follows along similar lines to the corresponding statement we showed for ideals.
- (3) The hypotheses:
 - (a) Examine your proofs from the previous problem and verify that one direction (each) of Graded NAK 2 and Graded NAK 3 hold without assuming that R or M is graded.
 - (b) Let K be a field and R = K[X] with the standard grading. Let M = K[X]/(X 1). Analyze the hypotheses and conclusion of Graded NAK 1 for this example.
 - (c) Let K be a field and R = K[X] with the standard grading. Let $M = K[X, X^{-1}]$. Analyze the hypotheses and conclusion of Graded NAK 1 for this example.
 - (d) Find counterexamples to Graded NAK 3 with M is not graded or not bounded below in degree.
 - (a) The (\Leftarrow) direction of Graded NAK 2 and the (\Rightarrow) direction of Graded NAK 3 hold without assuming that R or M is graded.
 - (b) M is not a graded module; any element is of the form $\overline{\lambda}$ for $\lambda \in K$; if such an element was homogeneous, then

$$\deg(\overline{\lambda}) = \deg(\overline{X\lambda}) = \deg(X) + \deg(\overline{\lambda}) = 1 + \deg(\overline{\lambda}),$$

- a contradiction. We also have $M = (X)M = R_+M$.
- (c) M is graded, but not bounded below. We also have $M = (X)M = R_+M$.
- (d) For a cheap example, take either of the previous with $S = \emptyset$.
- (4) Minimal generating sets: Let R be an N-graded ring with $R_0 = K$ a field. Let M be a a Z-graded module with $M_{\ll 0} = 0$.
 - (a) Explain why every minimal generating set for M has the same cardinality.
 - (b) Explain why every homogeneous generating set for M contains a minimal generating set for M. Moreover, explain why any generating set (homogeneous or not) has cardinality at least that of a minimal generating set.
 - (c) Explain why "minimal generating set" is equivalent to "homogeneous generating set such that no proper subset generates".
 - (d) Give an example of a finitely generated module N over K[X, Y] and two generating set S₁, S₂ for N such that no proper subset of S_i generates N, but |S₁| ≠ |S₂|. Compare to the statements above.
 - (a) Because all bases of a vector space do.
 - (b) If S is a homogeneous generating set for M, then the images span M/R_+M , so the images must contain a basis; the elements of S that map to a basis form a minimal generating set. For a general generating set, its images still contain a basis of M/R_+M .

- (c) This just follows from the fact that a basis of a vector space is the same as a minimal spanning set.
- (d) One could take the two generating sets of the ideal I = ((X 1)Y, XY) = (Y).
- (5) Let R be an N-graded ring with $R_0 = K$ a field. Suppose that $R_{red} = R/\sqrt{0}$ is a domain, and that $f \in R$ is a homogeneous nonnilpotent element of positive degree. Show that R/(f) is reduced implies that R is a reduced, and hence a domain.
 - (6) Let $r \in \sqrt{0}$ be a homogeneous nilpotent element. Then for some $e \in \mathbb{N}$ we have $r^e = 0 \in (f)$, and since R/(f) is reduced, $r \in (f)$. Thus, we can write r = fs for some homogeneous s. But $r \in \sqrt{0}$, $f \notin \sqrt{0}$, and $\sqrt{0}$ prime implies that $s \in \sqrt{0}$. This implies that $\sqrt{0} = f\sqrt{0} \subseteq R_+\sqrt{0}$, so $\sqrt{0} = 0$; i.e., R is reduced.