DEFINITION: Let R be an \mathbb{N} -graded ring with graded pieces R_i . A \mathbb{Z} -grading on an R-module M is

- a decomposition of M as additive groups $M = \bigoplus_{e \in \mathbb{Z}} M_e$
- such that $r \in R_d$ and $m \in M_e$ implies $rm \in M_{d+e}$.

An \mathbb{Z} -graded module is a module with a \mathbb{Z} -grading. As with rings, we have the notions of homogeneous elements of M, the degree of a homogeneous element, homogeneous decomposition of an arbitrary element of M. A homomorphism $\phi : M \to N$ between graded modules is degree-preserving if $\phi(M_e) \subseteq N_e$.

GRADED NAK 1: Let R be an \mathbb{N} -graded ring, and R_+ be the ideal generated by the homogeneous elements of positive degree. Let M be a \mathbb{Z} -graded module. Suppose that $M_{\ll 0} = 0$; that is, there is some $n \in \mathbb{Z}$ such that $M_t = 0$ for $t \leq n$. Then $M = R_+M$ implies M = 0.

GRADED NAK 2: Let R be an N-graded ring and M be a Z-graded module with $M_{\ll 0} = 0$. Let N be a graded submodule of M. Then $M = N + R_+M$ if and only if M = N.

GRADED NAK 3: Let R be an \mathbb{N} -graded ring and M be a \mathbb{Z} -graded module with $M_{\ll 0} = 0$. Then a set of homogeneous elements $S \subseteq M$ generates M if and only if the image of S in M/R_+M generates M/R_+M as a module over $R_0 \cong R/R_+$.

DEFINITION: Let R be an \mathbb{N} -graded ring with $R_0 = K$ a field. Let M be a a \mathbb{Z} -graded module with $M_{\ll 0} = 0$. A set S of homogeneous elements of M is a **minimal generating set** for M if the image of S in M/R_+M is an K-vector space basis.

- (1) Warmup with minimal generating sets.
 - (a) Note that the definition of "minimal generating set" does not say that it is a generating set. Use Graded NAK 3 to explain why it is!
 - (b) Let K be a field and S = K[X, Y]. Verify that $\{X^2, XY, Y^2\}$ is a minimal generating set of the ideal I it generates in S.
 - (c) Let K be a field. Find a minimal generating set of S = K[X, Y] as a module over the K-subalgebra R = K[X + Y, XY].
- (2) Proofs of graded NAKs:
 - (a) Prove Graded NAK 1.
 - **(b)** Use Graded NAK 1 to prove Graded NAK 2.
 - (c) Use Graded NAK 2 to prove Graded NAK 3.
- (3) The hypotheses:
 - (a) Examine your proofs from the previous problem and verify that one direction (each) of Graded NAK 2 and Graded NAK 3 hold without assuming that R or M is graded.
 - (b) Let K be a field and R = K[X] with the standard grading. Let M = K[X]/(X 1). Analyze the hypotheses and conclusion of Graded NAK 1 for this example.
 - (c) Let K be a field and R = K[X] with the standard grading. Let $M = K[X, X^{-1}]$. Analyze the hypotheses and conclusion of Graded NAK 1 for this example.
 - (d) Find counterexamples to Graded NAK 3 with M is not graded or not bounded below in degree.

- (4) Minimal generating sets: Let R be an N-graded ring with $R_0 = K$ a field. Let M be a a \mathbb{Z} -graded module with $M_{\ll 0} = 0$.
 - (a) Explain why every minimal generating set for M has the same cardinality.
 - (b) Explain why every homogeneous generating set for M contains a minimal generating set for M. Moreover, explain why any generating set (homogeneous or not) has cardinality at least that of a minimal generating set.
 - (c) Explain why "minimal generating set" is equivalent to "homogeneous generating set such that no proper subset generates".
 - (d) Give an example of a finitely generated module N over K[X, Y] and two generating set S_1, S_2 for N such that no proper subset of S_i generates N, but $|S_1| \neq |S_2|$. Compare to the statements above.
- (5) Let R be an \mathbb{N} -graded ring with $R_0 = K$ a field. Suppose that $R_{\text{red}} = R/\sqrt{0}$ is a domain, and that $f \in R$ is a homogeneous nonnilpotent element of positive degree. Show that R/(f) is reduced implies that R is a reduced, and hence a domain.