
§2.9: NOETHERIAN RINGS

DEFINITION: A ring R is Noetherian if every ascending chain of ideals I1 ⊆ I2 ⊆ I3 ⊆ · · · eventually
stabilizes: i.e., there is some N such that In = IN for all n ≥ N .

HILBERT BASIS THEOREM: If R is a Noetherian ring, then the polynomial ring R[X] and power series
ring RJXK are also Noetherian.

We will return to the proof of Hilbert Basis Theorem after discussing Noetherian modules next time.

COROLLARY: Every finitely generated algebra over a field is Noetherian.

(1)(1) Equivalences for Noetherianity.
(a)(a) Show1 that R is Noetherian if and only if every ideal is finitely generated.
(b)(b) Show2 that R is Noetherian if and only if every nonempty collection of ideals has a maximal3

element.

(a)(a) (⇐) Suppose that every ideal is finitely generated, and take a chain I1 ⊆ I2 ⊆ · · · . Consider
I =

⋃
n In. This is an ideal (it was important that we had a chain, not an arbitrary collection

of ideals for this step), and by hypothesis we have I = (f1, . . . , fm). For each i, there is
some ni such that fi ∈ Ini

. Let N = max{ni}. Then I = (f1, . . . , fm) ⊆ IN ⊆ I , so
equality holds, and the chain stabilizes at N .
(⇒) Suppose that there is an ideal I that is not finitely generated. Then we construct an
infinite chain as follows: let f1 ∈ I r 0 (0 is finitely generated so I 6= 0), and set I1 = (f1),
and for each n take fn+1 ∈ I r In = (f1, . . . , fn), (In is finitely generated so I 6= In).

(b)(b) (⇐) Suppose that every nonempty collection of ideals has a maximal element. Then a chain
of ideals I1 ⊆ I2 ⊆ I3 ⊆ · · · is, in particular, a nonempty collection of ideals, hence has a
maximal element, say In. Then for n ≥ n, IN ⊆ In and maximality of IN imply IN = In.
(⇒) Suppose that there is a nonempty collection of ideals without a maximal element, say
S. Let I1 be any element of S. Then, by definition, there is some I2 that properly contains
I1, and so on, yielding a chain that does not stabilize.

(2)(2) Some Noetherian rings:
(a)(a) Show that fields and PIDs are Noetherian.
(b)(b) Show that if R is Noetherian and I ⊆ R, then R/I is Noetherian.
(c)(c) Is4 every subring of a Noetherian ring Noetherian?

(a)(a) Every element of a field is generated by no elements; every element of a PID is generated
by one element.

(b)(b) The ideals of R/I are in containment-preserving bijection with ideals of R containing I . A
chain of ideals in R containing I must stabilize, so the corresponding chain in R/I must
stabilize as well.

1For the backward direction, consider
⋃

n∈N In
2Hint: For the forward direction, show the contrapositive.
3This means that if S is our collection of ideals, there is some I ∈ S such that no J ∈ S properly contains I . It does not mean
that there is a maximal ideal in S.

4Hint: Every domain has a fraction field, even the domain from (4a).



(c)(c) No: K[X1, X2, . . . ] is not Noetherian, but it is a subring of its fraction field K(X1, X2, . . . ),
which is a field, hence Noetherian.

(3)(3) Use the Hilbert Basis Theorem to deduce the Corollary.

From the Hilbert Basis Theorem and induction, if R is Noetherian, then R[X1, . . . , Xn] is as
well. In particular, if K is a field, then K[X1, . . . , Xn] is too. Since a finitely generated K-
algebra is a quotient of some K[X1, . . . , Xn], then any such ring is Noetherian as well.

(4)(4) Some nonNoetherian rings:
(a)(a) Let K be a field. Show that K[X1, X2, . . . ] is not Noetherian.
(b) Let K be a field. Show that K[X,XY,XY 2, . . . ] is not Noetherian.
(c) Show that C([0, 1],R) is not Noetherian.

(a)(a) The ideal (X1, X2, . . . ) is not finitely generated.
(b) The ideal (X,XY, . . . ) is not finitely generated.
(c) The ideal

√
(x) = m0 is not finitely generated.

(5) Let R be a Noetherian ring. Show that for every ideal I , there is some n such that
√
I
n ⊆ I . In

particular, there is some n such that for every nilpotent element z, zn = 0.

Let
√
I = (f1, . . . , fm). For each i, there is some ni such that fni

i ∈ I . Then for n ≥
n1 + · · ·+ nm −m+ 1, any generator fa1

1 · · · fam
m with

∑
ai = n must have aj ≥ nj for some

j, and hence fa1
1 · · · fam

m ∈ I .
For the particular case, we consider

√
0.

(6) Let R be Noetherian. Show that every element of R admits a decomposition into irreducibles.

We argue the contrapositive. Suppose that r ∈ R does not admit a decomposition into irre-
ducibles. Then in particular, r is reducible, so r = r1r

′
1, with r′1 not a unit, so (r) $ (r1).

Likewise, r1 is reducible, so r1 = r2r
′
2, with r′2 not a unit, so (r1) $ (r2). We can continue like

this forever to obtain an infinite ascending chain of principal ideals even.

(7) Prove the principle of Noetherian induction: Let P be a property of a ring. Suppose that “For every
nonzero ideal I , P is true for R/I implies that P is true for R” and P holds for all fields. Then P is
true for every Noetherian ring.

(8) (a) Suppose that every maximal ideal of R is finitely generated. Must R be Noetherian?
(b) Suppose that every ascending chain of prime ideals stabilizes. Must R be Noetherian?
(c) Suppose that every prime ideal of R is finitely generated. Must R be Noetherian?

(a) No. One counterexample is C∞([0, 1],R). Prove it!
Here is another more algebraic example: Let K be a field, and R be the subring of K(X, Y )
consisting of elements that can be written as f/g with f = aXn + bY and g = uXn + cY
for some n ≥ 0, a, b, c ∈ K[X, Y ], and u ∈ K[X, Y ] with nonzero constant term. I leave it
to you to show that



• R is indeed a subring of K(X, Y ),
• the ideal (X) is a maximal ideal,
• any r ∈ Rr (X) is a unit, so (X) is the unique maximal ideal, and
• the ideal (Y, Y/X, Y/X2, . . . ) is not finitely generated.

This example is not totally coming from nowhere; see if you can find the train of thought
behind it.

(b) No.
(c) Yes.


